This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Corollary 1 of Cancellability of Congruences: Two products with a common factor are congruent modulo an integer being coprime to the common factor iff the other factors are congruent modulo the integer. (Contributed by AV, 13-Jul-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | cncongrcoprm | |- ( ( ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) /\ ( N e. NN /\ ( C gcd N ) = 1 ) ) -> ( ( ( A x. C ) mod N ) = ( ( B x. C ) mod N ) <-> ( A mod N ) = ( B mod N ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl | |- ( ( N e. NN /\ ( C gcd N ) = 1 ) -> N e. NN ) |
|
| 2 | nncn | |- ( N e. NN -> N e. CC ) |
|
| 3 | 2 | div1d | |- ( N e. NN -> ( N / 1 ) = N ) |
| 4 | oveq2 | |- ( ( C gcd N ) = 1 -> ( N / ( C gcd N ) ) = ( N / 1 ) ) |
|
| 5 | 4 | eqcomd | |- ( ( C gcd N ) = 1 -> ( N / 1 ) = ( N / ( C gcd N ) ) ) |
| 6 | 3 5 | sylan9req | |- ( ( N e. NN /\ ( C gcd N ) = 1 ) -> N = ( N / ( C gcd N ) ) ) |
| 7 | 1 6 | jca | |- ( ( N e. NN /\ ( C gcd N ) = 1 ) -> ( N e. NN /\ N = ( N / ( C gcd N ) ) ) ) |
| 8 | cncongr | |- ( ( ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) /\ ( N e. NN /\ N = ( N / ( C gcd N ) ) ) ) -> ( ( ( A x. C ) mod N ) = ( ( B x. C ) mod N ) <-> ( A mod N ) = ( B mod N ) ) ) |
|
| 9 | 7 8 | sylan2 | |- ( ( ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) /\ ( N e. NN /\ ( C gcd N ) = 1 ) ) -> ( ( ( A x. C ) mod N ) = ( ( B x. C ) mod N ) <-> ( A mod N ) = ( B mod N ) ) ) |