This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The complex numbers are an Abelian group under addition. This version of cnaddabl shows the explicit structure "scaffold" we chose for the definition for Abelian groups. Note: This theorem has hard-coded structure indices for demonstration purposes. It is not intended for general use; use cnaddabl instead. (New usage is discouraged.) (Contributed by NM, 18-Oct-2012)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | cnaddablx.g | ⊢ 𝐺 = { 〈 1 , ℂ 〉 , 〈 2 , + 〉 } | |
| Assertion | cnaddablx | ⊢ 𝐺 ∈ Abel |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnaddablx.g | ⊢ 𝐺 = { 〈 1 , ℂ 〉 , 〈 2 , + 〉 } | |
| 2 | cnex | ⊢ ℂ ∈ V | |
| 3 | addex | ⊢ + ∈ V | |
| 4 | addcl | ⊢ ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ) → ( 𝑥 + 𝑦 ) ∈ ℂ ) | |
| 5 | addass | ⊢ ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ ) → ( ( 𝑥 + 𝑦 ) + 𝑧 ) = ( 𝑥 + ( 𝑦 + 𝑧 ) ) ) | |
| 6 | 0cn | ⊢ 0 ∈ ℂ | |
| 7 | addlid | ⊢ ( 𝑥 ∈ ℂ → ( 0 + 𝑥 ) = 𝑥 ) | |
| 8 | negcl | ⊢ ( 𝑥 ∈ ℂ → - 𝑥 ∈ ℂ ) | |
| 9 | addcom | ⊢ ( ( 𝑥 ∈ ℂ ∧ - 𝑥 ∈ ℂ ) → ( 𝑥 + - 𝑥 ) = ( - 𝑥 + 𝑥 ) ) | |
| 10 | 8 9 | mpdan | ⊢ ( 𝑥 ∈ ℂ → ( 𝑥 + - 𝑥 ) = ( - 𝑥 + 𝑥 ) ) |
| 11 | negid | ⊢ ( 𝑥 ∈ ℂ → ( 𝑥 + - 𝑥 ) = 0 ) | |
| 12 | 10 11 | eqtr3d | ⊢ ( 𝑥 ∈ ℂ → ( - 𝑥 + 𝑥 ) = 0 ) |
| 13 | 2 3 1 4 5 6 7 8 12 | isgrpix | ⊢ 𝐺 ∈ Grp |
| 14 | 2 3 1 | grpbasex | ⊢ ℂ = ( Base ‘ 𝐺 ) |
| 15 | 2 3 1 | grpplusgx | ⊢ + = ( +g ‘ 𝐺 ) |
| 16 | addcom | ⊢ ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ) → ( 𝑥 + 𝑦 ) = ( 𝑦 + 𝑥 ) ) | |
| 17 | 13 14 15 16 | isabli | ⊢ 𝐺 ∈ Abel |