This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The restriction of a metric space is closed if it is complete. (Contributed by AV, 9-Oct-2022)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cmsss.h | |- K = ( M |`s A ) |
|
| cmsss.x | |- X = ( Base ` M ) |
||
| cmsss.j | |- J = ( TopOpen ` M ) |
||
| Assertion | cmssmscld | |- ( ( M e. MetSp /\ A C_ X /\ K e. CMetSp ) -> A e. ( Clsd ` J ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cmsss.h | |- K = ( M |`s A ) |
|
| 2 | cmsss.x | |- X = ( Base ` M ) |
|
| 3 | cmsss.j | |- J = ( TopOpen ` M ) |
|
| 4 | eqid | |- ( ( dist ` M ) |` ( X X. X ) ) = ( ( dist ` M ) |` ( X X. X ) ) |
|
| 5 | 2 4 | msmet | |- ( M e. MetSp -> ( ( dist ` M ) |` ( X X. X ) ) e. ( Met ` X ) ) |
| 6 | 5 | 3ad2ant1 | |- ( ( M e. MetSp /\ A C_ X /\ K e. CMetSp ) -> ( ( dist ` M ) |` ( X X. X ) ) e. ( Met ` X ) ) |
| 7 | xpss12 | |- ( ( A C_ X /\ A C_ X ) -> ( A X. A ) C_ ( X X. X ) ) |
|
| 8 | 7 | anidms | |- ( A C_ X -> ( A X. A ) C_ ( X X. X ) ) |
| 9 | 8 | 3ad2ant2 | |- ( ( M e. MetSp /\ A C_ X /\ K e. CMetSp ) -> ( A X. A ) C_ ( X X. X ) ) |
| 10 | 9 | resabs1d | |- ( ( M e. MetSp /\ A C_ X /\ K e. CMetSp ) -> ( ( ( dist ` M ) |` ( X X. X ) ) |` ( A X. A ) ) = ( ( dist ` M ) |` ( A X. A ) ) ) |
| 11 | 2 | sseq2i | |- ( A C_ X <-> A C_ ( Base ` M ) ) |
| 12 | fvex | |- ( Base ` M ) e. _V |
|
| 13 | 12 | ssex | |- ( A C_ ( Base ` M ) -> A e. _V ) |
| 14 | 11 13 | sylbi | |- ( A C_ X -> A e. _V ) |
| 15 | 14 | 3ad2ant2 | |- ( ( M e. MetSp /\ A C_ X /\ K e. CMetSp ) -> A e. _V ) |
| 16 | eqid | |- ( dist ` M ) = ( dist ` M ) |
|
| 17 | 1 16 | ressds | |- ( A e. _V -> ( dist ` M ) = ( dist ` K ) ) |
| 18 | 15 17 | syl | |- ( ( M e. MetSp /\ A C_ X /\ K e. CMetSp ) -> ( dist ` M ) = ( dist ` K ) ) |
| 19 | 18 | reseq1d | |- ( ( M e. MetSp /\ A C_ X /\ K e. CMetSp ) -> ( ( dist ` M ) |` ( A X. A ) ) = ( ( dist ` K ) |` ( A X. A ) ) ) |
| 20 | 10 19 | eqtrd | |- ( ( M e. MetSp /\ A C_ X /\ K e. CMetSp ) -> ( ( ( dist ` M ) |` ( X X. X ) ) |` ( A X. A ) ) = ( ( dist ` K ) |` ( A X. A ) ) ) |
| 21 | eqid | |- ( Base ` K ) = ( Base ` K ) |
|
| 22 | eqid | |- ( ( dist ` K ) |` ( ( Base ` K ) X. ( Base ` K ) ) ) = ( ( dist ` K ) |` ( ( Base ` K ) X. ( Base ` K ) ) ) |
|
| 23 | 21 22 | iscms | |- ( K e. CMetSp <-> ( K e. MetSp /\ ( ( dist ` K ) |` ( ( Base ` K ) X. ( Base ` K ) ) ) e. ( CMet ` ( Base ` K ) ) ) ) |
| 24 | 1 2 | ressbas2 | |- ( A C_ X -> A = ( Base ` K ) ) |
| 25 | 24 | adantr | |- ( ( A C_ X /\ K e. MetSp ) -> A = ( Base ` K ) ) |
| 26 | 25 | eqcomd | |- ( ( A C_ X /\ K e. MetSp ) -> ( Base ` K ) = A ) |
| 27 | 26 | sqxpeqd | |- ( ( A C_ X /\ K e. MetSp ) -> ( ( Base ` K ) X. ( Base ` K ) ) = ( A X. A ) ) |
| 28 | 27 | reseq2d | |- ( ( A C_ X /\ K e. MetSp ) -> ( ( dist ` K ) |` ( ( Base ` K ) X. ( Base ` K ) ) ) = ( ( dist ` K ) |` ( A X. A ) ) ) |
| 29 | 26 | fveq2d | |- ( ( A C_ X /\ K e. MetSp ) -> ( CMet ` ( Base ` K ) ) = ( CMet ` A ) ) |
| 30 | 28 29 | eleq12d | |- ( ( A C_ X /\ K e. MetSp ) -> ( ( ( dist ` K ) |` ( ( Base ` K ) X. ( Base ` K ) ) ) e. ( CMet ` ( Base ` K ) ) <-> ( ( dist ` K ) |` ( A X. A ) ) e. ( CMet ` A ) ) ) |
| 31 | 30 | biimpd | |- ( ( A C_ X /\ K e. MetSp ) -> ( ( ( dist ` K ) |` ( ( Base ` K ) X. ( Base ` K ) ) ) e. ( CMet ` ( Base ` K ) ) -> ( ( dist ` K ) |` ( A X. A ) ) e. ( CMet ` A ) ) ) |
| 32 | 31 | expimpd | |- ( A C_ X -> ( ( K e. MetSp /\ ( ( dist ` K ) |` ( ( Base ` K ) X. ( Base ` K ) ) ) e. ( CMet ` ( Base ` K ) ) ) -> ( ( dist ` K ) |` ( A X. A ) ) e. ( CMet ` A ) ) ) |
| 33 | 23 32 | biimtrid | |- ( A C_ X -> ( K e. CMetSp -> ( ( dist ` K ) |` ( A X. A ) ) e. ( CMet ` A ) ) ) |
| 34 | 33 | imp | |- ( ( A C_ X /\ K e. CMetSp ) -> ( ( dist ` K ) |` ( A X. A ) ) e. ( CMet ` A ) ) |
| 35 | 34 | 3adant1 | |- ( ( M e. MetSp /\ A C_ X /\ K e. CMetSp ) -> ( ( dist ` K ) |` ( A X. A ) ) e. ( CMet ` A ) ) |
| 36 | 20 35 | eqeltrd | |- ( ( M e. MetSp /\ A C_ X /\ K e. CMetSp ) -> ( ( ( dist ` M ) |` ( X X. X ) ) |` ( A X. A ) ) e. ( CMet ` A ) ) |
| 37 | eqid | |- ( MetOpen ` ( ( dist ` M ) |` ( X X. X ) ) ) = ( MetOpen ` ( ( dist ` M ) |` ( X X. X ) ) ) |
|
| 38 | 37 | metsscmetcld | |- ( ( ( ( dist ` M ) |` ( X X. X ) ) e. ( Met ` X ) /\ ( ( ( dist ` M ) |` ( X X. X ) ) |` ( A X. A ) ) e. ( CMet ` A ) ) -> A e. ( Clsd ` ( MetOpen ` ( ( dist ` M ) |` ( X X. X ) ) ) ) ) |
| 39 | 6 36 38 | syl2anc | |- ( ( M e. MetSp /\ A C_ X /\ K e. CMetSp ) -> A e. ( Clsd ` ( MetOpen ` ( ( dist ` M ) |` ( X X. X ) ) ) ) ) |
| 40 | 3 2 4 | mstopn | |- ( M e. MetSp -> J = ( MetOpen ` ( ( dist ` M ) |` ( X X. X ) ) ) ) |
| 41 | 40 | 3ad2ant1 | |- ( ( M e. MetSp /\ A C_ X /\ K e. CMetSp ) -> J = ( MetOpen ` ( ( dist ` M ) |` ( X X. X ) ) ) ) |
| 42 | 41 | fveq2d | |- ( ( M e. MetSp /\ A C_ X /\ K e. CMetSp ) -> ( Clsd ` J ) = ( Clsd ` ( MetOpen ` ( ( dist ` M ) |` ( X X. X ) ) ) ) ) |
| 43 | 39 42 | eleqtrrd | |- ( ( M e. MetSp /\ A C_ X /\ K e. CMetSp ) -> A e. ( Clsd ` J ) ) |