This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A magma right and left identity belongs to the underlying set of the operation. (Contributed by FL, 12-Dec-2009) (Revised by Mario Carneiro, 22-Dec-2013) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | iorlid.1 | |- X = ran G |
|
| iorlid.2 | |- U = ( GId ` G ) |
||
| Assertion | iorlid | |- ( G e. ( Magma i^i ExId ) -> U e. X ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iorlid.1 | |- X = ran G |
|
| 2 | iorlid.2 | |- U = ( GId ` G ) |
|
| 3 | 1 2 | idrval | |- ( G e. ( Magma i^i ExId ) -> U = ( iota_ u e. X A. x e. X ( ( u G x ) = x /\ ( x G u ) = x ) ) ) |
| 4 | 1 | exidu1 | |- ( G e. ( Magma i^i ExId ) -> E! u e. X A. x e. X ( ( u G x ) = x /\ ( x G u ) = x ) ) |
| 5 | riotacl | |- ( E! u e. X A. x e. X ( ( u G x ) = x /\ ( x G u ) = x ) -> ( iota_ u e. X A. x e. X ( ( u G x ) = x /\ ( x G u ) = x ) ) e. X ) |
|
| 6 | 4 5 | syl | |- ( G e. ( Magma i^i ExId ) -> ( iota_ u e. X A. x e. X ( ( u G x ) = x /\ ( x G u ) = x ) ) e. X ) |
| 7 | 3 6 | eqeltrd | |- ( G e. ( Magma i^i ExId ) -> U e. X ) |