This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Express a relative indexed intersection as an intersection. (Contributed by Stefan O'Rear, 22-Feb-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | riinint | |- ( ( X e. V /\ A. k e. I S C_ X ) -> ( X i^i |^|_ k e. I S ) = |^| ( { X } u. ran ( k e. I |-> S ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssexg | |- ( ( S C_ X /\ X e. V ) -> S e. _V ) |
|
| 2 | 1 | expcom | |- ( X e. V -> ( S C_ X -> S e. _V ) ) |
| 3 | 2 | ralimdv | |- ( X e. V -> ( A. k e. I S C_ X -> A. k e. I S e. _V ) ) |
| 4 | 3 | imp | |- ( ( X e. V /\ A. k e. I S C_ X ) -> A. k e. I S e. _V ) |
| 5 | dfiin3g | |- ( A. k e. I S e. _V -> |^|_ k e. I S = |^| ran ( k e. I |-> S ) ) |
|
| 6 | 4 5 | syl | |- ( ( X e. V /\ A. k e. I S C_ X ) -> |^|_ k e. I S = |^| ran ( k e. I |-> S ) ) |
| 7 | 6 | ineq2d | |- ( ( X e. V /\ A. k e. I S C_ X ) -> ( X i^i |^|_ k e. I S ) = ( X i^i |^| ran ( k e. I |-> S ) ) ) |
| 8 | intun | |- |^| ( { X } u. ran ( k e. I |-> S ) ) = ( |^| { X } i^i |^| ran ( k e. I |-> S ) ) |
|
| 9 | intsng | |- ( X e. V -> |^| { X } = X ) |
|
| 10 | 9 | adantr | |- ( ( X e. V /\ A. k e. I S C_ X ) -> |^| { X } = X ) |
| 11 | 10 | ineq1d | |- ( ( X e. V /\ A. k e. I S C_ X ) -> ( |^| { X } i^i |^| ran ( k e. I |-> S ) ) = ( X i^i |^| ran ( k e. I |-> S ) ) ) |
| 12 | 8 11 | eqtrid | |- ( ( X e. V /\ A. k e. I S C_ X ) -> |^| ( { X } u. ran ( k e. I |-> S ) ) = ( X i^i |^| ran ( k e. I |-> S ) ) ) |
| 13 | 7 12 | eqtr4d | |- ( ( X e. V /\ A. k e. I S C_ X ) -> ( X i^i |^|_ k e. I S ) = |^| ( { X } u. ran ( k e. I |-> S ) ) ) |