This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Properties of a word to represent a walk of a fixed length, definition of WWalks expanded. (Contributed by AV, 28-Apr-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | iswwlksnx.v | |- V = ( Vtx ` G ) |
|
| iswwlksnx.e | |- E = ( Edg ` G ) |
||
| Assertion | iswwlksnx | |- ( N e. NN0 -> ( W e. ( N WWalksN G ) <-> ( W e. Word V /\ A. i e. ( 0 ..^ ( ( # ` W ) - 1 ) ) { ( W ` i ) , ( W ` ( i + 1 ) ) } e. E /\ ( # ` W ) = ( N + 1 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iswwlksnx.v | |- V = ( Vtx ` G ) |
|
| 2 | iswwlksnx.e | |- E = ( Edg ` G ) |
|
| 3 | iswwlksn | |- ( N e. NN0 -> ( W e. ( N WWalksN G ) <-> ( W e. ( WWalks ` G ) /\ ( # ` W ) = ( N + 1 ) ) ) ) |
|
| 4 | 1 2 | iswwlks | |- ( W e. ( WWalks ` G ) <-> ( W =/= (/) /\ W e. Word V /\ A. i e. ( 0 ..^ ( ( # ` W ) - 1 ) ) { ( W ` i ) , ( W ` ( i + 1 ) ) } e. E ) ) |
| 5 | df-3an | |- ( ( W =/= (/) /\ W e. Word V /\ A. i e. ( 0 ..^ ( ( # ` W ) - 1 ) ) { ( W ` i ) , ( W ` ( i + 1 ) ) } e. E ) <-> ( ( W =/= (/) /\ W e. Word V ) /\ A. i e. ( 0 ..^ ( ( # ` W ) - 1 ) ) { ( W ` i ) , ( W ` ( i + 1 ) ) } e. E ) ) |
|
| 6 | nn0p1gt0 | |- ( N e. NN0 -> 0 < ( N + 1 ) ) |
|
| 7 | 6 | gt0ne0d | |- ( N e. NN0 -> ( N + 1 ) =/= 0 ) |
| 8 | 7 | adantr | |- ( ( N e. NN0 /\ ( # ` W ) = ( N + 1 ) ) -> ( N + 1 ) =/= 0 ) |
| 9 | neeq1 | |- ( ( # ` W ) = ( N + 1 ) -> ( ( # ` W ) =/= 0 <-> ( N + 1 ) =/= 0 ) ) |
|
| 10 | 9 | adantl | |- ( ( N e. NN0 /\ ( # ` W ) = ( N + 1 ) ) -> ( ( # ` W ) =/= 0 <-> ( N + 1 ) =/= 0 ) ) |
| 11 | 8 10 | mpbird | |- ( ( N e. NN0 /\ ( # ` W ) = ( N + 1 ) ) -> ( # ` W ) =/= 0 ) |
| 12 | hasheq0 | |- ( W e. Word V -> ( ( # ` W ) = 0 <-> W = (/) ) ) |
|
| 13 | 12 | necon3bid | |- ( W e. Word V -> ( ( # ` W ) =/= 0 <-> W =/= (/) ) ) |
| 14 | 11 13 | syl5ibcom | |- ( ( N e. NN0 /\ ( # ` W ) = ( N + 1 ) ) -> ( W e. Word V -> W =/= (/) ) ) |
| 15 | 14 | pm4.71rd | |- ( ( N e. NN0 /\ ( # ` W ) = ( N + 1 ) ) -> ( W e. Word V <-> ( W =/= (/) /\ W e. Word V ) ) ) |
| 16 | 15 | bicomd | |- ( ( N e. NN0 /\ ( # ` W ) = ( N + 1 ) ) -> ( ( W =/= (/) /\ W e. Word V ) <-> W e. Word V ) ) |
| 17 | 16 | anbi1d | |- ( ( N e. NN0 /\ ( # ` W ) = ( N + 1 ) ) -> ( ( ( W =/= (/) /\ W e. Word V ) /\ A. i e. ( 0 ..^ ( ( # ` W ) - 1 ) ) { ( W ` i ) , ( W ` ( i + 1 ) ) } e. E ) <-> ( W e. Word V /\ A. i e. ( 0 ..^ ( ( # ` W ) - 1 ) ) { ( W ` i ) , ( W ` ( i + 1 ) ) } e. E ) ) ) |
| 18 | 5 17 | bitrid | |- ( ( N e. NN0 /\ ( # ` W ) = ( N + 1 ) ) -> ( ( W =/= (/) /\ W e. Word V /\ A. i e. ( 0 ..^ ( ( # ` W ) - 1 ) ) { ( W ` i ) , ( W ` ( i + 1 ) ) } e. E ) <-> ( W e. Word V /\ A. i e. ( 0 ..^ ( ( # ` W ) - 1 ) ) { ( W ` i ) , ( W ` ( i + 1 ) ) } e. E ) ) ) |
| 19 | 4 18 | bitrid | |- ( ( N e. NN0 /\ ( # ` W ) = ( N + 1 ) ) -> ( W e. ( WWalks ` G ) <-> ( W e. Word V /\ A. i e. ( 0 ..^ ( ( # ` W ) - 1 ) ) { ( W ` i ) , ( W ` ( i + 1 ) ) } e. E ) ) ) |
| 20 | 19 | ex | |- ( N e. NN0 -> ( ( # ` W ) = ( N + 1 ) -> ( W e. ( WWalks ` G ) <-> ( W e. Word V /\ A. i e. ( 0 ..^ ( ( # ` W ) - 1 ) ) { ( W ` i ) , ( W ` ( i + 1 ) ) } e. E ) ) ) ) |
| 21 | 20 | pm5.32rd | |- ( N e. NN0 -> ( ( W e. ( WWalks ` G ) /\ ( # ` W ) = ( N + 1 ) ) <-> ( ( W e. Word V /\ A. i e. ( 0 ..^ ( ( # ` W ) - 1 ) ) { ( W ` i ) , ( W ` ( i + 1 ) ) } e. E ) /\ ( # ` W ) = ( N + 1 ) ) ) ) |
| 22 | df-3an | |- ( ( W e. Word V /\ A. i e. ( 0 ..^ ( ( # ` W ) - 1 ) ) { ( W ` i ) , ( W ` ( i + 1 ) ) } e. E /\ ( # ` W ) = ( N + 1 ) ) <-> ( ( W e. Word V /\ A. i e. ( 0 ..^ ( ( # ` W ) - 1 ) ) { ( W ` i ) , ( W ` ( i + 1 ) ) } e. E ) /\ ( # ` W ) = ( N + 1 ) ) ) |
|
| 23 | 21 22 | bitr4di | |- ( N e. NN0 -> ( ( W e. ( WWalks ` G ) /\ ( # ` W ) = ( N + 1 ) ) <-> ( W e. Word V /\ A. i e. ( 0 ..^ ( ( # ` W ) - 1 ) ) { ( W ` i ) , ( W ` ( i + 1 ) ) } e. E /\ ( # ` W ) = ( N + 1 ) ) ) ) |
| 24 | 3 23 | bitrd | |- ( N e. NN0 -> ( W e. ( N WWalksN G ) <-> ( W e. Word V /\ A. i e. ( 0 ..^ ( ( # ` W ) - 1 ) ) { ( W ` i ) , ( W ` ( i + 1 ) ) } e. E /\ ( # ` W ) = ( N + 1 ) ) ) ) |