This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The last but one vertex in a closed walk is a neighbor of the first vertex of the closed walk. (Contributed by AV, 17-Feb-2022)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | clwwlknlbonbgr1 | |- ( ( G e. USGraph /\ W e. ( N ClWWalksN G ) ) -> ( W ` ( N - 1 ) ) e. ( G NeighbVtx ( W ` 0 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid | |- ( Vtx ` G ) = ( Vtx ` G ) |
|
| 2 | eqid | |- ( Edg ` G ) = ( Edg ` G ) |
|
| 3 | 1 2 | clwwlknp | |- ( W e. ( N ClWWalksN G ) -> ( ( W e. Word ( Vtx ` G ) /\ ( # ` W ) = N ) /\ A. i e. ( 0 ..^ ( N - 1 ) ) { ( W ` i ) , ( W ` ( i + 1 ) ) } e. ( Edg ` G ) /\ { ( lastS ` W ) , ( W ` 0 ) } e. ( Edg ` G ) ) ) |
| 4 | lsw | |- ( W e. Word ( Vtx ` G ) -> ( lastS ` W ) = ( W ` ( ( # ` W ) - 1 ) ) ) |
|
| 5 | fvoveq1 | |- ( ( # ` W ) = N -> ( W ` ( ( # ` W ) - 1 ) ) = ( W ` ( N - 1 ) ) ) |
|
| 6 | 4 5 | sylan9eq | |- ( ( W e. Word ( Vtx ` G ) /\ ( # ` W ) = N ) -> ( lastS ` W ) = ( W ` ( N - 1 ) ) ) |
| 7 | 6 | preq1d | |- ( ( W e. Word ( Vtx ` G ) /\ ( # ` W ) = N ) -> { ( lastS ` W ) , ( W ` 0 ) } = { ( W ` ( N - 1 ) ) , ( W ` 0 ) } ) |
| 8 | 7 | eleq1d | |- ( ( W e. Word ( Vtx ` G ) /\ ( # ` W ) = N ) -> ( { ( lastS ` W ) , ( W ` 0 ) } e. ( Edg ` G ) <-> { ( W ` ( N - 1 ) ) , ( W ` 0 ) } e. ( Edg ` G ) ) ) |
| 9 | 8 | biimpd | |- ( ( W e. Word ( Vtx ` G ) /\ ( # ` W ) = N ) -> ( { ( lastS ` W ) , ( W ` 0 ) } e. ( Edg ` G ) -> { ( W ` ( N - 1 ) ) , ( W ` 0 ) } e. ( Edg ` G ) ) ) |
| 10 | 9 | a1d | |- ( ( W e. Word ( Vtx ` G ) /\ ( # ` W ) = N ) -> ( A. i e. ( 0 ..^ ( N - 1 ) ) { ( W ` i ) , ( W ` ( i + 1 ) ) } e. ( Edg ` G ) -> ( { ( lastS ` W ) , ( W ` 0 ) } e. ( Edg ` G ) -> { ( W ` ( N - 1 ) ) , ( W ` 0 ) } e. ( Edg ` G ) ) ) ) |
| 11 | 10 | 3imp | |- ( ( ( W e. Word ( Vtx ` G ) /\ ( # ` W ) = N ) /\ A. i e. ( 0 ..^ ( N - 1 ) ) { ( W ` i ) , ( W ` ( i + 1 ) ) } e. ( Edg ` G ) /\ { ( lastS ` W ) , ( W ` 0 ) } e. ( Edg ` G ) ) -> { ( W ` ( N - 1 ) ) , ( W ` 0 ) } e. ( Edg ` G ) ) |
| 12 | 3 11 | syl | |- ( W e. ( N ClWWalksN G ) -> { ( W ` ( N - 1 ) ) , ( W ` 0 ) } e. ( Edg ` G ) ) |
| 13 | 12 | adantl | |- ( ( G e. USGraph /\ W e. ( N ClWWalksN G ) ) -> { ( W ` ( N - 1 ) ) , ( W ` 0 ) } e. ( Edg ` G ) ) |
| 14 | 2 | nbusgreledg | |- ( G e. USGraph -> ( ( W ` ( N - 1 ) ) e. ( G NeighbVtx ( W ` 0 ) ) <-> { ( W ` ( N - 1 ) ) , ( W ` 0 ) } e. ( Edg ` G ) ) ) |
| 15 | 14 | adantr | |- ( ( G e. USGraph /\ W e. ( N ClWWalksN G ) ) -> ( ( W ` ( N - 1 ) ) e. ( G NeighbVtx ( W ` 0 ) ) <-> { ( W ` ( N - 1 ) ) , ( W ` 0 ) } e. ( Edg ` G ) ) ) |
| 16 | 13 15 | mpbird | |- ( ( G e. USGraph /\ W e. ( N ClWWalksN G ) ) -> ( W ` ( N - 1 ) ) e. ( G NeighbVtx ( W ` 0 ) ) ) |