This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Properties of a set being a closed walk (represented by a word). (Contributed by Alexander van der Vekens, 17-Jun-2018) (Revised by AV, 24-Apr-2021) (Proof shortened by AV, 23-Mar-2022)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | isclwwlknx.v | |- V = ( Vtx ` G ) |
|
| isclwwlknx.e | |- E = ( Edg ` G ) |
||
| Assertion | clwwlknp | |- ( W e. ( N ClWWalksN G ) -> ( ( W e. Word V /\ ( # ` W ) = N ) /\ A. i e. ( 0 ..^ ( N - 1 ) ) { ( W ` i ) , ( W ` ( i + 1 ) ) } e. E /\ { ( lastS ` W ) , ( W ` 0 ) } e. E ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isclwwlknx.v | |- V = ( Vtx ` G ) |
|
| 2 | isclwwlknx.e | |- E = ( Edg ` G ) |
|
| 3 | 1 | clwwlknbp | |- ( W e. ( N ClWWalksN G ) -> ( W e. Word V /\ ( # ` W ) = N ) ) |
| 4 | simpr | |- ( ( W e. ( N ClWWalksN G ) /\ ( W e. Word V /\ ( # ` W ) = N ) ) -> ( W e. Word V /\ ( # ` W ) = N ) ) |
|
| 5 | clwwlknnn | |- ( W e. ( N ClWWalksN G ) -> N e. NN ) |
|
| 6 | 1 2 | isclwwlknx | |- ( N e. NN -> ( W e. ( N ClWWalksN G ) <-> ( ( W e. Word V /\ A. i e. ( 0 ..^ ( ( # ` W ) - 1 ) ) { ( W ` i ) , ( W ` ( i + 1 ) ) } e. E /\ { ( lastS ` W ) , ( W ` 0 ) } e. E ) /\ ( # ` W ) = N ) ) ) |
| 7 | 3simpc | |- ( ( W e. Word V /\ A. i e. ( 0 ..^ ( ( # ` W ) - 1 ) ) { ( W ` i ) , ( W ` ( i + 1 ) ) } e. E /\ { ( lastS ` W ) , ( W ` 0 ) } e. E ) -> ( A. i e. ( 0 ..^ ( ( # ` W ) - 1 ) ) { ( W ` i ) , ( W ` ( i + 1 ) ) } e. E /\ { ( lastS ` W ) , ( W ` 0 ) } e. E ) ) |
|
| 8 | 7 | adantr | |- ( ( ( W e. Word V /\ A. i e. ( 0 ..^ ( ( # ` W ) - 1 ) ) { ( W ` i ) , ( W ` ( i + 1 ) ) } e. E /\ { ( lastS ` W ) , ( W ` 0 ) } e. E ) /\ ( # ` W ) = N ) -> ( A. i e. ( 0 ..^ ( ( # ` W ) - 1 ) ) { ( W ` i ) , ( W ` ( i + 1 ) ) } e. E /\ { ( lastS ` W ) , ( W ` 0 ) } e. E ) ) |
| 9 | 6 8 | biimtrdi | |- ( N e. NN -> ( W e. ( N ClWWalksN G ) -> ( A. i e. ( 0 ..^ ( ( # ` W ) - 1 ) ) { ( W ` i ) , ( W ` ( i + 1 ) ) } e. E /\ { ( lastS ` W ) , ( W ` 0 ) } e. E ) ) ) |
| 10 | 5 9 | mpcom | |- ( W e. ( N ClWWalksN G ) -> ( A. i e. ( 0 ..^ ( ( # ` W ) - 1 ) ) { ( W ` i ) , ( W ` ( i + 1 ) ) } e. E /\ { ( lastS ` W ) , ( W ` 0 ) } e. E ) ) |
| 11 | 10 | adantr | |- ( ( W e. ( N ClWWalksN G ) /\ ( W e. Word V /\ ( # ` W ) = N ) ) -> ( A. i e. ( 0 ..^ ( ( # ` W ) - 1 ) ) { ( W ` i ) , ( W ` ( i + 1 ) ) } e. E /\ { ( lastS ` W ) , ( W ` 0 ) } e. E ) ) |
| 12 | oveq1 | |- ( ( # ` W ) = N -> ( ( # ` W ) - 1 ) = ( N - 1 ) ) |
|
| 13 | 12 | oveq2d | |- ( ( # ` W ) = N -> ( 0 ..^ ( ( # ` W ) - 1 ) ) = ( 0 ..^ ( N - 1 ) ) ) |
| 14 | 13 | raleqdv | |- ( ( # ` W ) = N -> ( A. i e. ( 0 ..^ ( ( # ` W ) - 1 ) ) { ( W ` i ) , ( W ` ( i + 1 ) ) } e. E <-> A. i e. ( 0 ..^ ( N - 1 ) ) { ( W ` i ) , ( W ` ( i + 1 ) ) } e. E ) ) |
| 15 | 14 | anbi1d | |- ( ( # ` W ) = N -> ( ( A. i e. ( 0 ..^ ( ( # ` W ) - 1 ) ) { ( W ` i ) , ( W ` ( i + 1 ) ) } e. E /\ { ( lastS ` W ) , ( W ` 0 ) } e. E ) <-> ( A. i e. ( 0 ..^ ( N - 1 ) ) { ( W ` i ) , ( W ` ( i + 1 ) ) } e. E /\ { ( lastS ` W ) , ( W ` 0 ) } e. E ) ) ) |
| 16 | 15 | ad2antll | |- ( ( W e. ( N ClWWalksN G ) /\ ( W e. Word V /\ ( # ` W ) = N ) ) -> ( ( A. i e. ( 0 ..^ ( ( # ` W ) - 1 ) ) { ( W ` i ) , ( W ` ( i + 1 ) ) } e. E /\ { ( lastS ` W ) , ( W ` 0 ) } e. E ) <-> ( A. i e. ( 0 ..^ ( N - 1 ) ) { ( W ` i ) , ( W ` ( i + 1 ) ) } e. E /\ { ( lastS ` W ) , ( W ` 0 ) } e. E ) ) ) |
| 17 | 11 16 | mpbid | |- ( ( W e. ( N ClWWalksN G ) /\ ( W e. Word V /\ ( # ` W ) = N ) ) -> ( A. i e. ( 0 ..^ ( N - 1 ) ) { ( W ` i ) , ( W ` ( i + 1 ) ) } e. E /\ { ( lastS ` W ) , ( W ` 0 ) } e. E ) ) |
| 18 | 4 17 | jca | |- ( ( W e. ( N ClWWalksN G ) /\ ( W e. Word V /\ ( # ` W ) = N ) ) -> ( ( W e. Word V /\ ( # ` W ) = N ) /\ ( A. i e. ( 0 ..^ ( N - 1 ) ) { ( W ` i ) , ( W ` ( i + 1 ) ) } e. E /\ { ( lastS ` W ) , ( W ` 0 ) } e. E ) ) ) |
| 19 | 3 18 | mpdan | |- ( W e. ( N ClWWalksN G ) -> ( ( W e. Word V /\ ( # ` W ) = N ) /\ ( A. i e. ( 0 ..^ ( N - 1 ) ) { ( W ` i ) , ( W ` ( i + 1 ) ) } e. E /\ { ( lastS ` W ) , ( W ` 0 ) } e. E ) ) ) |
| 20 | 3anass | |- ( ( ( W e. Word V /\ ( # ` W ) = N ) /\ A. i e. ( 0 ..^ ( N - 1 ) ) { ( W ` i ) , ( W ` ( i + 1 ) ) } e. E /\ { ( lastS ` W ) , ( W ` 0 ) } e. E ) <-> ( ( W e. Word V /\ ( # ` W ) = N ) /\ ( A. i e. ( 0 ..^ ( N - 1 ) ) { ( W ` i ) , ( W ` ( i + 1 ) ) } e. E /\ { ( lastS ` W ) , ( W ` 0 ) } e. E ) ) ) |
|
| 21 | 19 20 | sylibr | |- ( W e. ( N ClWWalksN G ) -> ( ( W e. Word V /\ ( # ` W ) = N ) /\ A. i e. ( 0 ..^ ( N - 1 ) ) { ( W ` i ) , ( W ` ( i + 1 ) ) } e. E /\ { ( lastS ` W ) , ( W ` 0 ) } e. E ) ) |