This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Distribution of negative over vector subtraction. (Contributed by NM, 6-Aug-2007) (Revised by AV, 29-Sep-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | clmpm1dir.v | |- V = ( Base ` W ) |
|
| clmpm1dir.s | |- .x. = ( .s ` W ) |
||
| clmpm1dir.a | |- .+ = ( +g ` W ) |
||
| Assertion | clmnegsubdi2 | |- ( ( W e. CMod /\ A e. V /\ B e. V ) -> ( -u 1 .x. ( A .+ ( -u 1 .x. B ) ) ) = ( B .+ ( -u 1 .x. A ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | clmpm1dir.v | |- V = ( Base ` W ) |
|
| 2 | clmpm1dir.s | |- .x. = ( .s ` W ) |
|
| 3 | clmpm1dir.a | |- .+ = ( +g ` W ) |
|
| 4 | simp1 | |- ( ( W e. CMod /\ A e. V /\ B e. V ) -> W e. CMod ) |
|
| 5 | eqid | |- ( Scalar ` W ) = ( Scalar ` W ) |
|
| 6 | eqid | |- ( Base ` ( Scalar ` W ) ) = ( Base ` ( Scalar ` W ) ) |
|
| 7 | 5 6 | clmneg1 | |- ( W e. CMod -> -u 1 e. ( Base ` ( Scalar ` W ) ) ) |
| 8 | 7 | 3ad2ant1 | |- ( ( W e. CMod /\ A e. V /\ B e. V ) -> -u 1 e. ( Base ` ( Scalar ` W ) ) ) |
| 9 | simp2 | |- ( ( W e. CMod /\ A e. V /\ B e. V ) -> A e. V ) |
|
| 10 | simpl | |- ( ( W e. CMod /\ B e. V ) -> W e. CMod ) |
|
| 11 | 7 | adantr | |- ( ( W e. CMod /\ B e. V ) -> -u 1 e. ( Base ` ( Scalar ` W ) ) ) |
| 12 | simpr | |- ( ( W e. CMod /\ B e. V ) -> B e. V ) |
|
| 13 | 1 5 2 6 | clmvscl | |- ( ( W e. CMod /\ -u 1 e. ( Base ` ( Scalar ` W ) ) /\ B e. V ) -> ( -u 1 .x. B ) e. V ) |
| 14 | 10 11 12 13 | syl3anc | |- ( ( W e. CMod /\ B e. V ) -> ( -u 1 .x. B ) e. V ) |
| 15 | 14 | 3adant2 | |- ( ( W e. CMod /\ A e. V /\ B e. V ) -> ( -u 1 .x. B ) e. V ) |
| 16 | 1 5 2 6 3 | clmvsdi | |- ( ( W e. CMod /\ ( -u 1 e. ( Base ` ( Scalar ` W ) ) /\ A e. V /\ ( -u 1 .x. B ) e. V ) ) -> ( -u 1 .x. ( A .+ ( -u 1 .x. B ) ) ) = ( ( -u 1 .x. A ) .+ ( -u 1 .x. ( -u 1 .x. B ) ) ) ) |
| 17 | 4 8 9 15 16 | syl13anc | |- ( ( W e. CMod /\ A e. V /\ B e. V ) -> ( -u 1 .x. ( A .+ ( -u 1 .x. B ) ) ) = ( ( -u 1 .x. A ) .+ ( -u 1 .x. ( -u 1 .x. B ) ) ) ) |
| 18 | 1 2 3 | clmnegneg | |- ( ( W e. CMod /\ B e. V ) -> ( -u 1 .x. ( -u 1 .x. B ) ) = B ) |
| 19 | 18 | 3adant2 | |- ( ( W e. CMod /\ A e. V /\ B e. V ) -> ( -u 1 .x. ( -u 1 .x. B ) ) = B ) |
| 20 | 19 | oveq2d | |- ( ( W e. CMod /\ A e. V /\ B e. V ) -> ( ( -u 1 .x. A ) .+ ( -u 1 .x. ( -u 1 .x. B ) ) ) = ( ( -u 1 .x. A ) .+ B ) ) |
| 21 | clmabl | |- ( W e. CMod -> W e. Abel ) |
|
| 22 | 21 | 3ad2ant1 | |- ( ( W e. CMod /\ A e. V /\ B e. V ) -> W e. Abel ) |
| 23 | simpl | |- ( ( W e. CMod /\ A e. V ) -> W e. CMod ) |
|
| 24 | 7 | adantr | |- ( ( W e. CMod /\ A e. V ) -> -u 1 e. ( Base ` ( Scalar ` W ) ) ) |
| 25 | simpr | |- ( ( W e. CMod /\ A e. V ) -> A e. V ) |
|
| 26 | 1 5 2 6 | clmvscl | |- ( ( W e. CMod /\ -u 1 e. ( Base ` ( Scalar ` W ) ) /\ A e. V ) -> ( -u 1 .x. A ) e. V ) |
| 27 | 23 24 25 26 | syl3anc | |- ( ( W e. CMod /\ A e. V ) -> ( -u 1 .x. A ) e. V ) |
| 28 | 27 | 3adant3 | |- ( ( W e. CMod /\ A e. V /\ B e. V ) -> ( -u 1 .x. A ) e. V ) |
| 29 | simp3 | |- ( ( W e. CMod /\ A e. V /\ B e. V ) -> B e. V ) |
|
| 30 | 1 3 | ablcom | |- ( ( W e. Abel /\ ( -u 1 .x. A ) e. V /\ B e. V ) -> ( ( -u 1 .x. A ) .+ B ) = ( B .+ ( -u 1 .x. A ) ) ) |
| 31 | 22 28 29 30 | syl3anc | |- ( ( W e. CMod /\ A e. V /\ B e. V ) -> ( ( -u 1 .x. A ) .+ B ) = ( B .+ ( -u 1 .x. A ) ) ) |
| 32 | 17 20 31 | 3eqtrd | |- ( ( W e. CMod /\ A e. V /\ B e. V ) -> ( -u 1 .x. ( A .+ ( -u 1 .x. B ) ) ) = ( B .+ ( -u 1 .x. A ) ) ) |