This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The (functionalized) operations of addition and multiplication by a scalar of a subcomplex module cannot be identical. (Contributed by NM, 31-May-2008) (Revised by AV, 3-Oct-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | clmopfne.t | |- .x. = ( .sf ` W ) |
|
| clmopfne.a | |- .+ = ( +f ` W ) |
||
| Assertion | clmopfne | |- ( W e. CMod -> .+ =/= .x. ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | clmopfne.t | |- .x. = ( .sf ` W ) |
|
| 2 | clmopfne.a | |- .+ = ( +f ` W ) |
|
| 3 | clmlmod | |- ( W e. CMod -> W e. LMod ) |
|
| 4 | ax-1ne0 | |- 1 =/= 0 |
|
| 5 | 4 | a1i | |- ( W e. CMod -> 1 =/= 0 ) |
| 6 | eqid | |- ( Scalar ` W ) = ( Scalar ` W ) |
|
| 7 | 6 | clm1 | |- ( W e. CMod -> 1 = ( 1r ` ( Scalar ` W ) ) ) |
| 8 | 6 | clm0 | |- ( W e. CMod -> 0 = ( 0g ` ( Scalar ` W ) ) ) |
| 9 | 5 7 8 | 3netr3d | |- ( W e. CMod -> ( 1r ` ( Scalar ` W ) ) =/= ( 0g ` ( Scalar ` W ) ) ) |
| 10 | eqid | |- ( Base ` W ) = ( Base ` W ) |
|
| 11 | eqid | |- ( Base ` ( Scalar ` W ) ) = ( Base ` ( Scalar ` W ) ) |
|
| 12 | eqid | |- ( 0g ` ( Scalar ` W ) ) = ( 0g ` ( Scalar ` W ) ) |
|
| 13 | eqid | |- ( 1r ` ( Scalar ` W ) ) = ( 1r ` ( Scalar ` W ) ) |
|
| 14 | 1 2 10 6 11 12 13 | lmodfopne | |- ( ( W e. LMod /\ ( 1r ` ( Scalar ` W ) ) =/= ( 0g ` ( Scalar ` W ) ) ) -> .+ =/= .x. ) |
| 15 | 3 9 14 | syl2anc | |- ( W e. CMod -> .+ =/= .x. ) |