This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Image of a limit under a continuous map. (Contributed by Mario Carneiro, 31-Jan-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | climcn1.1 | |- Z = ( ZZ>= ` M ) |
|
| climcn1.2 | |- ( ph -> M e. ZZ ) |
||
| climcn1.3 | |- ( ph -> A e. B ) |
||
| climcn1.4 | |- ( ( ph /\ z e. B ) -> ( F ` z ) e. CC ) |
||
| climcn1.5 | |- ( ph -> G ~~> A ) |
||
| climcn1.6 | |- ( ph -> H e. W ) |
||
| climcn1.7 | |- ( ( ph /\ x e. RR+ ) -> E. y e. RR+ A. z e. B ( ( abs ` ( z - A ) ) < y -> ( abs ` ( ( F ` z ) - ( F ` A ) ) ) < x ) ) |
||
| climcn1.8 | |- ( ( ph /\ k e. Z ) -> ( G ` k ) e. B ) |
||
| climcn1.9 | |- ( ( ph /\ k e. Z ) -> ( H ` k ) = ( F ` ( G ` k ) ) ) |
||
| Assertion | climcn1 | |- ( ph -> H ~~> ( F ` A ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | climcn1.1 | |- Z = ( ZZ>= ` M ) |
|
| 2 | climcn1.2 | |- ( ph -> M e. ZZ ) |
|
| 3 | climcn1.3 | |- ( ph -> A e. B ) |
|
| 4 | climcn1.4 | |- ( ( ph /\ z e. B ) -> ( F ` z ) e. CC ) |
|
| 5 | climcn1.5 | |- ( ph -> G ~~> A ) |
|
| 6 | climcn1.6 | |- ( ph -> H e. W ) |
|
| 7 | climcn1.7 | |- ( ( ph /\ x e. RR+ ) -> E. y e. RR+ A. z e. B ( ( abs ` ( z - A ) ) < y -> ( abs ` ( ( F ` z ) - ( F ` A ) ) ) < x ) ) |
|
| 8 | climcn1.8 | |- ( ( ph /\ k e. Z ) -> ( G ` k ) e. B ) |
|
| 9 | climcn1.9 | |- ( ( ph /\ k e. Z ) -> ( H ` k ) = ( F ` ( G ` k ) ) ) |
|
| 10 | 2 | adantr | |- ( ( ph /\ y e. RR+ ) -> M e. ZZ ) |
| 11 | simpr | |- ( ( ph /\ y e. RR+ ) -> y e. RR+ ) |
|
| 12 | eqidd | |- ( ( ( ph /\ y e. RR+ ) /\ k e. Z ) -> ( G ` k ) = ( G ` k ) ) |
|
| 13 | 5 | adantr | |- ( ( ph /\ y e. RR+ ) -> G ~~> A ) |
| 14 | 1 10 11 12 13 | climi2 | |- ( ( ph /\ y e. RR+ ) -> E. j e. Z A. k e. ( ZZ>= ` j ) ( abs ` ( ( G ` k ) - A ) ) < y ) |
| 15 | 1 | uztrn2 | |- ( ( j e. Z /\ k e. ( ZZ>= ` j ) ) -> k e. Z ) |
| 16 | 8 | adantlr | |- ( ( ( ph /\ y e. RR+ ) /\ k e. Z ) -> ( G ` k ) e. B ) |
| 17 | fvoveq1 | |- ( z = ( G ` k ) -> ( abs ` ( z - A ) ) = ( abs ` ( ( G ` k ) - A ) ) ) |
|
| 18 | 17 | breq1d | |- ( z = ( G ` k ) -> ( ( abs ` ( z - A ) ) < y <-> ( abs ` ( ( G ` k ) - A ) ) < y ) ) |
| 19 | 18 | imbrov2fvoveq | |- ( z = ( G ` k ) -> ( ( ( abs ` ( z - A ) ) < y -> ( abs ` ( ( F ` z ) - ( F ` A ) ) ) < x ) <-> ( ( abs ` ( ( G ` k ) - A ) ) < y -> ( abs ` ( ( F ` ( G ` k ) ) - ( F ` A ) ) ) < x ) ) ) |
| 20 | 19 | rspcva | |- ( ( ( G ` k ) e. B /\ A. z e. B ( ( abs ` ( z - A ) ) < y -> ( abs ` ( ( F ` z ) - ( F ` A ) ) ) < x ) ) -> ( ( abs ` ( ( G ` k ) - A ) ) < y -> ( abs ` ( ( F ` ( G ` k ) ) - ( F ` A ) ) ) < x ) ) |
| 21 | 16 20 | sylan | |- ( ( ( ( ph /\ y e. RR+ ) /\ k e. Z ) /\ A. z e. B ( ( abs ` ( z - A ) ) < y -> ( abs ` ( ( F ` z ) - ( F ` A ) ) ) < x ) ) -> ( ( abs ` ( ( G ` k ) - A ) ) < y -> ( abs ` ( ( F ` ( G ` k ) ) - ( F ` A ) ) ) < x ) ) |
| 22 | 21 | an32s | |- ( ( ( ( ph /\ y e. RR+ ) /\ A. z e. B ( ( abs ` ( z - A ) ) < y -> ( abs ` ( ( F ` z ) - ( F ` A ) ) ) < x ) ) /\ k e. Z ) -> ( ( abs ` ( ( G ` k ) - A ) ) < y -> ( abs ` ( ( F ` ( G ` k ) ) - ( F ` A ) ) ) < x ) ) |
| 23 | 15 22 | sylan2 | |- ( ( ( ( ph /\ y e. RR+ ) /\ A. z e. B ( ( abs ` ( z - A ) ) < y -> ( abs ` ( ( F ` z ) - ( F ` A ) ) ) < x ) ) /\ ( j e. Z /\ k e. ( ZZ>= ` j ) ) ) -> ( ( abs ` ( ( G ` k ) - A ) ) < y -> ( abs ` ( ( F ` ( G ` k ) ) - ( F ` A ) ) ) < x ) ) |
| 24 | 23 | anassrs | |- ( ( ( ( ( ph /\ y e. RR+ ) /\ A. z e. B ( ( abs ` ( z - A ) ) < y -> ( abs ` ( ( F ` z ) - ( F ` A ) ) ) < x ) ) /\ j e. Z ) /\ k e. ( ZZ>= ` j ) ) -> ( ( abs ` ( ( G ` k ) - A ) ) < y -> ( abs ` ( ( F ` ( G ` k ) ) - ( F ` A ) ) ) < x ) ) |
| 25 | 24 | ralimdva | |- ( ( ( ( ph /\ y e. RR+ ) /\ A. z e. B ( ( abs ` ( z - A ) ) < y -> ( abs ` ( ( F ` z ) - ( F ` A ) ) ) < x ) ) /\ j e. Z ) -> ( A. k e. ( ZZ>= ` j ) ( abs ` ( ( G ` k ) - A ) ) < y -> A. k e. ( ZZ>= ` j ) ( abs ` ( ( F ` ( G ` k ) ) - ( F ` A ) ) ) < x ) ) |
| 26 | 25 | reximdva | |- ( ( ( ph /\ y e. RR+ ) /\ A. z e. B ( ( abs ` ( z - A ) ) < y -> ( abs ` ( ( F ` z ) - ( F ` A ) ) ) < x ) ) -> ( E. j e. Z A. k e. ( ZZ>= ` j ) ( abs ` ( ( G ` k ) - A ) ) < y -> E. j e. Z A. k e. ( ZZ>= ` j ) ( abs ` ( ( F ` ( G ` k ) ) - ( F ` A ) ) ) < x ) ) |
| 27 | 26 | ex | |- ( ( ph /\ y e. RR+ ) -> ( A. z e. B ( ( abs ` ( z - A ) ) < y -> ( abs ` ( ( F ` z ) - ( F ` A ) ) ) < x ) -> ( E. j e. Z A. k e. ( ZZ>= ` j ) ( abs ` ( ( G ` k ) - A ) ) < y -> E. j e. Z A. k e. ( ZZ>= ` j ) ( abs ` ( ( F ` ( G ` k ) ) - ( F ` A ) ) ) < x ) ) ) |
| 28 | 14 27 | mpid | |- ( ( ph /\ y e. RR+ ) -> ( A. z e. B ( ( abs ` ( z - A ) ) < y -> ( abs ` ( ( F ` z ) - ( F ` A ) ) ) < x ) -> E. j e. Z A. k e. ( ZZ>= ` j ) ( abs ` ( ( F ` ( G ` k ) ) - ( F ` A ) ) ) < x ) ) |
| 29 | 28 | rexlimdva | |- ( ph -> ( E. y e. RR+ A. z e. B ( ( abs ` ( z - A ) ) < y -> ( abs ` ( ( F ` z ) - ( F ` A ) ) ) < x ) -> E. j e. Z A. k e. ( ZZ>= ` j ) ( abs ` ( ( F ` ( G ` k ) ) - ( F ` A ) ) ) < x ) ) |
| 30 | 29 | adantr | |- ( ( ph /\ x e. RR+ ) -> ( E. y e. RR+ A. z e. B ( ( abs ` ( z - A ) ) < y -> ( abs ` ( ( F ` z ) - ( F ` A ) ) ) < x ) -> E. j e. Z A. k e. ( ZZ>= ` j ) ( abs ` ( ( F ` ( G ` k ) ) - ( F ` A ) ) ) < x ) ) |
| 31 | 7 30 | mpd | |- ( ( ph /\ x e. RR+ ) -> E. j e. Z A. k e. ( ZZ>= ` j ) ( abs ` ( ( F ` ( G ` k ) ) - ( F ` A ) ) ) < x ) |
| 32 | 31 | ralrimiva | |- ( ph -> A. x e. RR+ E. j e. Z A. k e. ( ZZ>= ` j ) ( abs ` ( ( F ` ( G ` k ) ) - ( F ` A ) ) ) < x ) |
| 33 | fveq2 | |- ( z = A -> ( F ` z ) = ( F ` A ) ) |
|
| 34 | 33 | eleq1d | |- ( z = A -> ( ( F ` z ) e. CC <-> ( F ` A ) e. CC ) ) |
| 35 | 4 | ralrimiva | |- ( ph -> A. z e. B ( F ` z ) e. CC ) |
| 36 | 34 35 3 | rspcdva | |- ( ph -> ( F ` A ) e. CC ) |
| 37 | fveq2 | |- ( z = ( G ` k ) -> ( F ` z ) = ( F ` ( G ` k ) ) ) |
|
| 38 | 37 | eleq1d | |- ( z = ( G ` k ) -> ( ( F ` z ) e. CC <-> ( F ` ( G ` k ) ) e. CC ) ) |
| 39 | 35 | adantr | |- ( ( ph /\ k e. Z ) -> A. z e. B ( F ` z ) e. CC ) |
| 40 | 38 39 8 | rspcdva | |- ( ( ph /\ k e. Z ) -> ( F ` ( G ` k ) ) e. CC ) |
| 41 | 1 2 6 9 36 40 | clim2c | |- ( ph -> ( H ~~> ( F ` A ) <-> A. x e. RR+ E. j e. Z A. k e. ( ZZ>= ` j ) ( abs ` ( ( F ` ( G ` k ) ) - ( F ` A ) ) ) < x ) ) |
| 42 | 32 41 | mpbird | |- ( ph -> H ~~> ( F ` A ) ) |