This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Restricted abstraction classes in a subclass relationship. (Contributed by NM, 30-May-1999)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ss2rab | |- ( { x e. A | ph } C_ { x e. A | ps } <-> A. x e. A ( ph -> ps ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-rab | |- { x e. A | ph } = { x | ( x e. A /\ ph ) } |
|
| 2 | df-rab | |- { x e. A | ps } = { x | ( x e. A /\ ps ) } |
|
| 3 | 1 2 | sseq12i | |- ( { x e. A | ph } C_ { x e. A | ps } <-> { x | ( x e. A /\ ph ) } C_ { x | ( x e. A /\ ps ) } ) |
| 4 | ss2ab | |- ( { x | ( x e. A /\ ph ) } C_ { x | ( x e. A /\ ps ) } <-> A. x ( ( x e. A /\ ph ) -> ( x e. A /\ ps ) ) ) |
|
| 5 | df-ral | |- ( A. x e. A ( ph -> ps ) <-> A. x ( x e. A -> ( ph -> ps ) ) ) |
|
| 6 | imdistan | |- ( ( x e. A -> ( ph -> ps ) ) <-> ( ( x e. A /\ ph ) -> ( x e. A /\ ps ) ) ) |
|
| 7 | 6 | albii | |- ( A. x ( x e. A -> ( ph -> ps ) ) <-> A. x ( ( x e. A /\ ph ) -> ( x e. A /\ ps ) ) ) |
| 8 | 5 7 | bitr2i | |- ( A. x ( ( x e. A /\ ph ) -> ( x e. A /\ ps ) ) <-> A. x e. A ( ph -> ps ) ) |
| 9 | 3 4 8 | 3bitri | |- ( { x e. A | ph } C_ { x e. A | ps } <-> A. x e. A ( ph -> ps ) ) |