This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The join of a closed subspace and its orthocomplement is all of Hilbert space. (Contributed by NM, 31-Oct-2005) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | chjo | |- ( A e. CH -> ( A vH ( _|_ ` A ) ) = ~H ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id | |- ( A = if ( A e. CH , A , ~H ) -> A = if ( A e. CH , A , ~H ) ) |
|
| 2 | fveq2 | |- ( A = if ( A e. CH , A , ~H ) -> ( _|_ ` A ) = ( _|_ ` if ( A e. CH , A , ~H ) ) ) |
|
| 3 | 1 2 | oveq12d | |- ( A = if ( A e. CH , A , ~H ) -> ( A vH ( _|_ ` A ) ) = ( if ( A e. CH , A , ~H ) vH ( _|_ ` if ( A e. CH , A , ~H ) ) ) ) |
| 4 | 3 | eqeq1d | |- ( A = if ( A e. CH , A , ~H ) -> ( ( A vH ( _|_ ` A ) ) = ~H <-> ( if ( A e. CH , A , ~H ) vH ( _|_ ` if ( A e. CH , A , ~H ) ) ) = ~H ) ) |
| 5 | ifchhv | |- if ( A e. CH , A , ~H ) e. CH |
|
| 6 | 5 | chjoi | |- ( if ( A e. CH , A , ~H ) vH ( _|_ ` if ( A e. CH , A , ~H ) ) ) = ~H |
| 7 | 4 6 | dedth | |- ( A e. CH -> ( A vH ( _|_ ` A ) ) = ~H ) |