This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The join of a closed subspace and its orthocomplement is all of Hilbert space. (Contributed by NM, 31-Oct-2005) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | chjo | ⊢ ( 𝐴 ∈ Cℋ → ( 𝐴 ∨ℋ ( ⊥ ‘ 𝐴 ) ) = ℋ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id | ⊢ ( 𝐴 = if ( 𝐴 ∈ Cℋ , 𝐴 , ℋ ) → 𝐴 = if ( 𝐴 ∈ Cℋ , 𝐴 , ℋ ) ) | |
| 2 | fveq2 | ⊢ ( 𝐴 = if ( 𝐴 ∈ Cℋ , 𝐴 , ℋ ) → ( ⊥ ‘ 𝐴 ) = ( ⊥ ‘ if ( 𝐴 ∈ Cℋ , 𝐴 , ℋ ) ) ) | |
| 3 | 1 2 | oveq12d | ⊢ ( 𝐴 = if ( 𝐴 ∈ Cℋ , 𝐴 , ℋ ) → ( 𝐴 ∨ℋ ( ⊥ ‘ 𝐴 ) ) = ( if ( 𝐴 ∈ Cℋ , 𝐴 , ℋ ) ∨ℋ ( ⊥ ‘ if ( 𝐴 ∈ Cℋ , 𝐴 , ℋ ) ) ) ) |
| 4 | 3 | eqeq1d | ⊢ ( 𝐴 = if ( 𝐴 ∈ Cℋ , 𝐴 , ℋ ) → ( ( 𝐴 ∨ℋ ( ⊥ ‘ 𝐴 ) ) = ℋ ↔ ( if ( 𝐴 ∈ Cℋ , 𝐴 , ℋ ) ∨ℋ ( ⊥ ‘ if ( 𝐴 ∈ Cℋ , 𝐴 , ℋ ) ) ) = ℋ ) ) |
| 5 | ifchhv | ⊢ if ( 𝐴 ∈ Cℋ , 𝐴 , ℋ ) ∈ Cℋ | |
| 6 | 5 | chjoi | ⊢ ( if ( 𝐴 ∈ Cℋ , 𝐴 , ℋ ) ∨ℋ ( ⊥ ‘ if ( 𝐴 ∈ Cℋ , 𝐴 , ℋ ) ) ) = ℋ |
| 7 | 4 6 | dedth | ⊢ ( 𝐴 ∈ Cℋ → ( 𝐴 ∨ℋ ( ⊥ ‘ 𝐴 ) ) = ℋ ) |