This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Hilbert lattice absorption law. From definition of lattice in Kalmbach p. 14. (Contributed by NM, 15-Jun-2004) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | chabs1 | |- ( ( A e. CH /\ B e. CH ) -> ( A vH ( A i^i B ) ) = A ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssid | |- A C_ A |
|
| 2 | inss1 | |- ( A i^i B ) C_ A |
|
| 3 | 1 2 | pm3.2i | |- ( A C_ A /\ ( A i^i B ) C_ A ) |
| 4 | simpl | |- ( ( A e. CH /\ B e. CH ) -> A e. CH ) |
|
| 5 | chincl | |- ( ( A e. CH /\ B e. CH ) -> ( A i^i B ) e. CH ) |
|
| 6 | chlub | |- ( ( A e. CH /\ ( A i^i B ) e. CH /\ A e. CH ) -> ( ( A C_ A /\ ( A i^i B ) C_ A ) <-> ( A vH ( A i^i B ) ) C_ A ) ) |
|
| 7 | 4 5 4 6 | syl3anc | |- ( ( A e. CH /\ B e. CH ) -> ( ( A C_ A /\ ( A i^i B ) C_ A ) <-> ( A vH ( A i^i B ) ) C_ A ) ) |
| 8 | 3 7 | mpbii | |- ( ( A e. CH /\ B e. CH ) -> ( A vH ( A i^i B ) ) C_ A ) |
| 9 | chub1 | |- ( ( A e. CH /\ ( A i^i B ) e. CH ) -> A C_ ( A vH ( A i^i B ) ) ) |
|
| 10 | 5 9 | syldan | |- ( ( A e. CH /\ B e. CH ) -> A C_ ( A vH ( A i^i B ) ) ) |
| 11 | 8 10 | eqssd | |- ( ( A e. CH /\ B e. CH ) -> ( A vH ( A i^i B ) ) = A ) |