This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: De Morgan's law for meet in a Hilbert lattice. (Contributed by NM, 21-Jun-2004) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | chdmm2 | |- ( ( A e. CH /\ B e. CH ) -> ( _|_ ` ( ( _|_ ` A ) i^i B ) ) = ( A vH ( _|_ ` B ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | choccl | |- ( A e. CH -> ( _|_ ` A ) e. CH ) |
|
| 2 | chdmm1 | |- ( ( ( _|_ ` A ) e. CH /\ B e. CH ) -> ( _|_ ` ( ( _|_ ` A ) i^i B ) ) = ( ( _|_ ` ( _|_ ` A ) ) vH ( _|_ ` B ) ) ) |
|
| 3 | 1 2 | sylan | |- ( ( A e. CH /\ B e. CH ) -> ( _|_ ` ( ( _|_ ` A ) i^i B ) ) = ( ( _|_ ` ( _|_ ` A ) ) vH ( _|_ ` B ) ) ) |
| 4 | ococ | |- ( A e. CH -> ( _|_ ` ( _|_ ` A ) ) = A ) |
|
| 5 | 4 | adantr | |- ( ( A e. CH /\ B e. CH ) -> ( _|_ ` ( _|_ ` A ) ) = A ) |
| 6 | 5 | oveq1d | |- ( ( A e. CH /\ B e. CH ) -> ( ( _|_ ` ( _|_ ` A ) ) vH ( _|_ ` B ) ) = ( A vH ( _|_ ` B ) ) ) |
| 7 | 3 6 | eqtrd | |- ( ( A e. CH /\ B e. CH ) -> ( _|_ ` ( ( _|_ ` A ) i^i B ) ) = ( A vH ( _|_ ` B ) ) ) |