This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: De Morgan's law for meet in a Hilbert lattice. (Contributed by NM, 21-Jun-2004) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | chdmm1 | |- ( ( A e. CH /\ B e. CH ) -> ( _|_ ` ( A i^i B ) ) = ( ( _|_ ` A ) vH ( _|_ ` B ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ineq1 | |- ( A = if ( A e. CH , A , ~H ) -> ( A i^i B ) = ( if ( A e. CH , A , ~H ) i^i B ) ) |
|
| 2 | 1 | fveq2d | |- ( A = if ( A e. CH , A , ~H ) -> ( _|_ ` ( A i^i B ) ) = ( _|_ ` ( if ( A e. CH , A , ~H ) i^i B ) ) ) |
| 3 | fveq2 | |- ( A = if ( A e. CH , A , ~H ) -> ( _|_ ` A ) = ( _|_ ` if ( A e. CH , A , ~H ) ) ) |
|
| 4 | 3 | oveq1d | |- ( A = if ( A e. CH , A , ~H ) -> ( ( _|_ ` A ) vH ( _|_ ` B ) ) = ( ( _|_ ` if ( A e. CH , A , ~H ) ) vH ( _|_ ` B ) ) ) |
| 5 | 2 4 | eqeq12d | |- ( A = if ( A e. CH , A , ~H ) -> ( ( _|_ ` ( A i^i B ) ) = ( ( _|_ ` A ) vH ( _|_ ` B ) ) <-> ( _|_ ` ( if ( A e. CH , A , ~H ) i^i B ) ) = ( ( _|_ ` if ( A e. CH , A , ~H ) ) vH ( _|_ ` B ) ) ) ) |
| 6 | ineq2 | |- ( B = if ( B e. CH , B , ~H ) -> ( if ( A e. CH , A , ~H ) i^i B ) = ( if ( A e. CH , A , ~H ) i^i if ( B e. CH , B , ~H ) ) ) |
|
| 7 | 6 | fveq2d | |- ( B = if ( B e. CH , B , ~H ) -> ( _|_ ` ( if ( A e. CH , A , ~H ) i^i B ) ) = ( _|_ ` ( if ( A e. CH , A , ~H ) i^i if ( B e. CH , B , ~H ) ) ) ) |
| 8 | fveq2 | |- ( B = if ( B e. CH , B , ~H ) -> ( _|_ ` B ) = ( _|_ ` if ( B e. CH , B , ~H ) ) ) |
|
| 9 | 8 | oveq2d | |- ( B = if ( B e. CH , B , ~H ) -> ( ( _|_ ` if ( A e. CH , A , ~H ) ) vH ( _|_ ` B ) ) = ( ( _|_ ` if ( A e. CH , A , ~H ) ) vH ( _|_ ` if ( B e. CH , B , ~H ) ) ) ) |
| 10 | 7 9 | eqeq12d | |- ( B = if ( B e. CH , B , ~H ) -> ( ( _|_ ` ( if ( A e. CH , A , ~H ) i^i B ) ) = ( ( _|_ ` if ( A e. CH , A , ~H ) ) vH ( _|_ ` B ) ) <-> ( _|_ ` ( if ( A e. CH , A , ~H ) i^i if ( B e. CH , B , ~H ) ) ) = ( ( _|_ ` if ( A e. CH , A , ~H ) ) vH ( _|_ ` if ( B e. CH , B , ~H ) ) ) ) ) |
| 11 | ifchhv | |- if ( A e. CH , A , ~H ) e. CH |
|
| 12 | ifchhv | |- if ( B e. CH , B , ~H ) e. CH |
|
| 13 | 11 12 | chdmm1i | |- ( _|_ ` ( if ( A e. CH , A , ~H ) i^i if ( B e. CH , B , ~H ) ) ) = ( ( _|_ ` if ( A e. CH , A , ~H ) ) vH ( _|_ ` if ( B e. CH , B , ~H ) ) ) |
| 14 | 5 10 13 | dedth2h | |- ( ( A e. CH /\ B e. CH ) -> ( _|_ ` ( A i^i B ) ) = ( ( _|_ ` A ) vH ( _|_ ` B ) ) ) |