This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: De Morgan's law for meet in a Hilbert lattice. (Contributed by NM, 21-Jun-2004) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | chdmm2 | ⊢ ( ( 𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) → ( ⊥ ‘ ( ( ⊥ ‘ 𝐴 ) ∩ 𝐵 ) ) = ( 𝐴 ∨ℋ ( ⊥ ‘ 𝐵 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | choccl | ⊢ ( 𝐴 ∈ Cℋ → ( ⊥ ‘ 𝐴 ) ∈ Cℋ ) | |
| 2 | chdmm1 | ⊢ ( ( ( ⊥ ‘ 𝐴 ) ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) → ( ⊥ ‘ ( ( ⊥ ‘ 𝐴 ) ∩ 𝐵 ) ) = ( ( ⊥ ‘ ( ⊥ ‘ 𝐴 ) ) ∨ℋ ( ⊥ ‘ 𝐵 ) ) ) | |
| 3 | 1 2 | sylan | ⊢ ( ( 𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) → ( ⊥ ‘ ( ( ⊥ ‘ 𝐴 ) ∩ 𝐵 ) ) = ( ( ⊥ ‘ ( ⊥ ‘ 𝐴 ) ) ∨ℋ ( ⊥ ‘ 𝐵 ) ) ) |
| 4 | ococ | ⊢ ( 𝐴 ∈ Cℋ → ( ⊥ ‘ ( ⊥ ‘ 𝐴 ) ) = 𝐴 ) | |
| 5 | 4 | adantr | ⊢ ( ( 𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) → ( ⊥ ‘ ( ⊥ ‘ 𝐴 ) ) = 𝐴 ) |
| 6 | 5 | oveq1d | ⊢ ( ( 𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) → ( ( ⊥ ‘ ( ⊥ ‘ 𝐴 ) ) ∨ℋ ( ⊥ ‘ 𝐵 ) ) = ( 𝐴 ∨ℋ ( ⊥ ‘ 𝐵 ) ) ) |
| 7 | 3 6 | eqtrd | ⊢ ( ( 𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) → ( ⊥ ‘ ( ( ⊥ ‘ 𝐴 ) ∩ 𝐵 ) ) = ( 𝐴 ∨ℋ ( ⊥ ‘ 𝐵 ) ) ) |