This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: De Morgan's law for meet in a Hilbert lattice. (Contributed by NM, 21-Jun-2004) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | chdmm1 | ⊢ ( ( 𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) → ( ⊥ ‘ ( 𝐴 ∩ 𝐵 ) ) = ( ( ⊥ ‘ 𝐴 ) ∨ℋ ( ⊥ ‘ 𝐵 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ineq1 | ⊢ ( 𝐴 = if ( 𝐴 ∈ Cℋ , 𝐴 , ℋ ) → ( 𝐴 ∩ 𝐵 ) = ( if ( 𝐴 ∈ Cℋ , 𝐴 , ℋ ) ∩ 𝐵 ) ) | |
| 2 | 1 | fveq2d | ⊢ ( 𝐴 = if ( 𝐴 ∈ Cℋ , 𝐴 , ℋ ) → ( ⊥ ‘ ( 𝐴 ∩ 𝐵 ) ) = ( ⊥ ‘ ( if ( 𝐴 ∈ Cℋ , 𝐴 , ℋ ) ∩ 𝐵 ) ) ) |
| 3 | fveq2 | ⊢ ( 𝐴 = if ( 𝐴 ∈ Cℋ , 𝐴 , ℋ ) → ( ⊥ ‘ 𝐴 ) = ( ⊥ ‘ if ( 𝐴 ∈ Cℋ , 𝐴 , ℋ ) ) ) | |
| 4 | 3 | oveq1d | ⊢ ( 𝐴 = if ( 𝐴 ∈ Cℋ , 𝐴 , ℋ ) → ( ( ⊥ ‘ 𝐴 ) ∨ℋ ( ⊥ ‘ 𝐵 ) ) = ( ( ⊥ ‘ if ( 𝐴 ∈ Cℋ , 𝐴 , ℋ ) ) ∨ℋ ( ⊥ ‘ 𝐵 ) ) ) |
| 5 | 2 4 | eqeq12d | ⊢ ( 𝐴 = if ( 𝐴 ∈ Cℋ , 𝐴 , ℋ ) → ( ( ⊥ ‘ ( 𝐴 ∩ 𝐵 ) ) = ( ( ⊥ ‘ 𝐴 ) ∨ℋ ( ⊥ ‘ 𝐵 ) ) ↔ ( ⊥ ‘ ( if ( 𝐴 ∈ Cℋ , 𝐴 , ℋ ) ∩ 𝐵 ) ) = ( ( ⊥ ‘ if ( 𝐴 ∈ Cℋ , 𝐴 , ℋ ) ) ∨ℋ ( ⊥ ‘ 𝐵 ) ) ) ) |
| 6 | ineq2 | ⊢ ( 𝐵 = if ( 𝐵 ∈ Cℋ , 𝐵 , ℋ ) → ( if ( 𝐴 ∈ Cℋ , 𝐴 , ℋ ) ∩ 𝐵 ) = ( if ( 𝐴 ∈ Cℋ , 𝐴 , ℋ ) ∩ if ( 𝐵 ∈ Cℋ , 𝐵 , ℋ ) ) ) | |
| 7 | 6 | fveq2d | ⊢ ( 𝐵 = if ( 𝐵 ∈ Cℋ , 𝐵 , ℋ ) → ( ⊥ ‘ ( if ( 𝐴 ∈ Cℋ , 𝐴 , ℋ ) ∩ 𝐵 ) ) = ( ⊥ ‘ ( if ( 𝐴 ∈ Cℋ , 𝐴 , ℋ ) ∩ if ( 𝐵 ∈ Cℋ , 𝐵 , ℋ ) ) ) ) |
| 8 | fveq2 | ⊢ ( 𝐵 = if ( 𝐵 ∈ Cℋ , 𝐵 , ℋ ) → ( ⊥ ‘ 𝐵 ) = ( ⊥ ‘ if ( 𝐵 ∈ Cℋ , 𝐵 , ℋ ) ) ) | |
| 9 | 8 | oveq2d | ⊢ ( 𝐵 = if ( 𝐵 ∈ Cℋ , 𝐵 , ℋ ) → ( ( ⊥ ‘ if ( 𝐴 ∈ Cℋ , 𝐴 , ℋ ) ) ∨ℋ ( ⊥ ‘ 𝐵 ) ) = ( ( ⊥ ‘ if ( 𝐴 ∈ Cℋ , 𝐴 , ℋ ) ) ∨ℋ ( ⊥ ‘ if ( 𝐵 ∈ Cℋ , 𝐵 , ℋ ) ) ) ) |
| 10 | 7 9 | eqeq12d | ⊢ ( 𝐵 = if ( 𝐵 ∈ Cℋ , 𝐵 , ℋ ) → ( ( ⊥ ‘ ( if ( 𝐴 ∈ Cℋ , 𝐴 , ℋ ) ∩ 𝐵 ) ) = ( ( ⊥ ‘ if ( 𝐴 ∈ Cℋ , 𝐴 , ℋ ) ) ∨ℋ ( ⊥ ‘ 𝐵 ) ) ↔ ( ⊥ ‘ ( if ( 𝐴 ∈ Cℋ , 𝐴 , ℋ ) ∩ if ( 𝐵 ∈ Cℋ , 𝐵 , ℋ ) ) ) = ( ( ⊥ ‘ if ( 𝐴 ∈ Cℋ , 𝐴 , ℋ ) ) ∨ℋ ( ⊥ ‘ if ( 𝐵 ∈ Cℋ , 𝐵 , ℋ ) ) ) ) ) |
| 11 | ifchhv | ⊢ if ( 𝐴 ∈ Cℋ , 𝐴 , ℋ ) ∈ Cℋ | |
| 12 | ifchhv | ⊢ if ( 𝐵 ∈ Cℋ , 𝐵 , ℋ ) ∈ Cℋ | |
| 13 | 11 12 | chdmm1i | ⊢ ( ⊥ ‘ ( if ( 𝐴 ∈ Cℋ , 𝐴 , ℋ ) ∩ if ( 𝐵 ∈ Cℋ , 𝐵 , ℋ ) ) ) = ( ( ⊥ ‘ if ( 𝐴 ∈ Cℋ , 𝐴 , ℋ ) ) ∨ℋ ( ⊥ ‘ if ( 𝐵 ∈ Cℋ , 𝐵 , ℋ ) ) ) |
| 14 | 5 10 13 | dedth2h | ⊢ ( ( 𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) → ( ⊥ ‘ ( 𝐴 ∩ 𝐵 ) ) = ( ( ⊥ ‘ 𝐴 ) ∨ℋ ( ⊥ ‘ 𝐵 ) ) ) |