This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Define the cofinality function. Definition B of Saharon Shelah, Cardinal Arithmetic (1994), p. xxx (Roman numeral 30). See cfval for its value and a description. (Contributed by NM, 1-Apr-2004)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-cf | |- cf = ( x e. On |-> |^| { y | E. z ( y = ( card ` z ) /\ ( z C_ x /\ A. v e. x E. u e. z v C_ u ) ) } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | ccf | |- cf |
|
| 1 | vx | |- x |
|
| 2 | con0 | |- On |
|
| 3 | vy | |- y |
|
| 4 | vz | |- z |
|
| 5 | 3 | cv | |- y |
| 6 | ccrd | |- card |
|
| 7 | 4 | cv | |- z |
| 8 | 7 6 | cfv | |- ( card ` z ) |
| 9 | 5 8 | wceq | |- y = ( card ` z ) |
| 10 | 1 | cv | |- x |
| 11 | 7 10 | wss | |- z C_ x |
| 12 | vv | |- v |
|
| 13 | vu | |- u |
|
| 14 | 12 | cv | |- v |
| 15 | 13 | cv | |- u |
| 16 | 14 15 | wss | |- v C_ u |
| 17 | 16 13 7 | wrex | |- E. u e. z v C_ u |
| 18 | 17 12 10 | wral | |- A. v e. x E. u e. z v C_ u |
| 19 | 11 18 | wa | |- ( z C_ x /\ A. v e. x E. u e. z v C_ u ) |
| 20 | 9 19 | wa | |- ( y = ( card ` z ) /\ ( z C_ x /\ A. v e. x E. u e. z v C_ u ) ) |
| 21 | 20 4 | wex | |- E. z ( y = ( card ` z ) /\ ( z C_ x /\ A. v e. x E. u e. z v C_ u ) ) |
| 22 | 21 3 | cab | |- { y | E. z ( y = ( card ` z ) /\ ( z C_ x /\ A. v e. x E. u e. z v C_ u ) ) } |
| 23 | 22 | cint | |- |^| { y | E. z ( y = ( card ` z ) /\ ( z C_ x /\ A. v e. x E. u e. z v C_ u ) ) } |
| 24 | 1 2 23 | cmpt | |- ( x e. On |-> |^| { y | E. z ( y = ( card ` z ) /\ ( z C_ x /\ A. v e. x E. u e. z v C_ u ) ) } ) |
| 25 | 0 24 | wceq | |- cf = ( x e. On |-> |^| { y | E. z ( y = ( card ` z ) /\ ( z C_ x /\ A. v e. x E. u e. z v C_ u ) ) } ) |