This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A representation of explicit substitution of a class for a variable, inferred from an implicit substitution hypothesis. For an alternate proof, see ceqsalgALT . (Contributed by NM, 29-Oct-2003) (Proof shortened by BJ, 29-Sep-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ceqsalg.1 | |- F/ x ps |
|
| ceqsalg.2 | |- ( x = A -> ( ph <-> ps ) ) |
||
| Assertion | ceqsalg | |- ( A e. V -> ( A. x ( x = A -> ph ) <-> ps ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ceqsalg.1 | |- F/ x ps |
|
| 2 | ceqsalg.2 | |- ( x = A -> ( ph <-> ps ) ) |
|
| 3 | 2 | ax-gen | |- A. x ( x = A -> ( ph <-> ps ) ) |
| 4 | ceqsalt | |- ( ( F/ x ps /\ A. x ( x = A -> ( ph <-> ps ) ) /\ A e. V ) -> ( A. x ( x = A -> ph ) <-> ps ) ) |
|
| 5 | 1 3 4 | mp3an12 | |- ( A e. V -> ( A. x ( x = A -> ph ) <-> ps ) ) |