This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: One less than the ceiling of a real number is strictly less than that number. (Contributed by Jeff Hankins, 10-Jun-2007)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ceim1l | |- ( A e. RR -> ( -u ( |_ ` -u A ) - 1 ) < A ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | renegcl | |- ( A e. RR -> -u A e. RR ) |
|
| 2 | reflcl | |- ( -u A e. RR -> ( |_ ` -u A ) e. RR ) |
|
| 3 | 1 2 | syl | |- ( A e. RR -> ( |_ ` -u A ) e. RR ) |
| 4 | 3 | recnd | |- ( A e. RR -> ( |_ ` -u A ) e. CC ) |
| 5 | ax-1cn | |- 1 e. CC |
|
| 6 | negdi | |- ( ( ( |_ ` -u A ) e. CC /\ 1 e. CC ) -> -u ( ( |_ ` -u A ) + 1 ) = ( -u ( |_ ` -u A ) + -u 1 ) ) |
|
| 7 | 4 5 6 | sylancl | |- ( A e. RR -> -u ( ( |_ ` -u A ) + 1 ) = ( -u ( |_ ` -u A ) + -u 1 ) ) |
| 8 | 4 | negcld | |- ( A e. RR -> -u ( |_ ` -u A ) e. CC ) |
| 9 | negsub | |- ( ( -u ( |_ ` -u A ) e. CC /\ 1 e. CC ) -> ( -u ( |_ ` -u A ) + -u 1 ) = ( -u ( |_ ` -u A ) - 1 ) ) |
|
| 10 | 8 5 9 | sylancl | |- ( A e. RR -> ( -u ( |_ ` -u A ) + -u 1 ) = ( -u ( |_ ` -u A ) - 1 ) ) |
| 11 | 7 10 | eqtr2d | |- ( A e. RR -> ( -u ( |_ ` -u A ) - 1 ) = -u ( ( |_ ` -u A ) + 1 ) ) |
| 12 | peano2re | |- ( ( |_ ` -u A ) e. RR -> ( ( |_ ` -u A ) + 1 ) e. RR ) |
|
| 13 | 3 12 | syl | |- ( A e. RR -> ( ( |_ ` -u A ) + 1 ) e. RR ) |
| 14 | flltp1 | |- ( -u A e. RR -> -u A < ( ( |_ ` -u A ) + 1 ) ) |
|
| 15 | 1 14 | syl | |- ( A e. RR -> -u A < ( ( |_ ` -u A ) + 1 ) ) |
| 16 | 15 | adantr | |- ( ( A e. RR /\ ( ( |_ ` -u A ) + 1 ) e. RR ) -> -u A < ( ( |_ ` -u A ) + 1 ) ) |
| 17 | ltnegcon1 | |- ( ( A e. RR /\ ( ( |_ ` -u A ) + 1 ) e. RR ) -> ( -u A < ( ( |_ ` -u A ) + 1 ) <-> -u ( ( |_ ` -u A ) + 1 ) < A ) ) |
|
| 18 | 16 17 | mpbid | |- ( ( A e. RR /\ ( ( |_ ` -u A ) + 1 ) e. RR ) -> -u ( ( |_ ` -u A ) + 1 ) < A ) |
| 19 | 13 18 | mpdan | |- ( A e. RR -> -u ( ( |_ ` -u A ) + 1 ) < A ) |
| 20 | 11 19 | eqbrtrd | |- ( A e. RR -> ( -u ( |_ ` -u A ) - 1 ) < A ) |