This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: One less than the ceiling of a real number is strictly less than that number. (Contributed by Jeff Hankins, 10-Jun-2007)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ceim1l | ⊢ ( 𝐴 ∈ ℝ → ( - ( ⌊ ‘ - 𝐴 ) − 1 ) < 𝐴 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | renegcl | ⊢ ( 𝐴 ∈ ℝ → - 𝐴 ∈ ℝ ) | |
| 2 | reflcl | ⊢ ( - 𝐴 ∈ ℝ → ( ⌊ ‘ - 𝐴 ) ∈ ℝ ) | |
| 3 | 1 2 | syl | ⊢ ( 𝐴 ∈ ℝ → ( ⌊ ‘ - 𝐴 ) ∈ ℝ ) |
| 4 | 3 | recnd | ⊢ ( 𝐴 ∈ ℝ → ( ⌊ ‘ - 𝐴 ) ∈ ℂ ) |
| 5 | ax-1cn | ⊢ 1 ∈ ℂ | |
| 6 | negdi | ⊢ ( ( ( ⌊ ‘ - 𝐴 ) ∈ ℂ ∧ 1 ∈ ℂ ) → - ( ( ⌊ ‘ - 𝐴 ) + 1 ) = ( - ( ⌊ ‘ - 𝐴 ) + - 1 ) ) | |
| 7 | 4 5 6 | sylancl | ⊢ ( 𝐴 ∈ ℝ → - ( ( ⌊ ‘ - 𝐴 ) + 1 ) = ( - ( ⌊ ‘ - 𝐴 ) + - 1 ) ) |
| 8 | 4 | negcld | ⊢ ( 𝐴 ∈ ℝ → - ( ⌊ ‘ - 𝐴 ) ∈ ℂ ) |
| 9 | negsub | ⊢ ( ( - ( ⌊ ‘ - 𝐴 ) ∈ ℂ ∧ 1 ∈ ℂ ) → ( - ( ⌊ ‘ - 𝐴 ) + - 1 ) = ( - ( ⌊ ‘ - 𝐴 ) − 1 ) ) | |
| 10 | 8 5 9 | sylancl | ⊢ ( 𝐴 ∈ ℝ → ( - ( ⌊ ‘ - 𝐴 ) + - 1 ) = ( - ( ⌊ ‘ - 𝐴 ) − 1 ) ) |
| 11 | 7 10 | eqtr2d | ⊢ ( 𝐴 ∈ ℝ → ( - ( ⌊ ‘ - 𝐴 ) − 1 ) = - ( ( ⌊ ‘ - 𝐴 ) + 1 ) ) |
| 12 | peano2re | ⊢ ( ( ⌊ ‘ - 𝐴 ) ∈ ℝ → ( ( ⌊ ‘ - 𝐴 ) + 1 ) ∈ ℝ ) | |
| 13 | 3 12 | syl | ⊢ ( 𝐴 ∈ ℝ → ( ( ⌊ ‘ - 𝐴 ) + 1 ) ∈ ℝ ) |
| 14 | flltp1 | ⊢ ( - 𝐴 ∈ ℝ → - 𝐴 < ( ( ⌊ ‘ - 𝐴 ) + 1 ) ) | |
| 15 | 1 14 | syl | ⊢ ( 𝐴 ∈ ℝ → - 𝐴 < ( ( ⌊ ‘ - 𝐴 ) + 1 ) ) |
| 16 | 15 | adantr | ⊢ ( ( 𝐴 ∈ ℝ ∧ ( ( ⌊ ‘ - 𝐴 ) + 1 ) ∈ ℝ ) → - 𝐴 < ( ( ⌊ ‘ - 𝐴 ) + 1 ) ) |
| 17 | ltnegcon1 | ⊢ ( ( 𝐴 ∈ ℝ ∧ ( ( ⌊ ‘ - 𝐴 ) + 1 ) ∈ ℝ ) → ( - 𝐴 < ( ( ⌊ ‘ - 𝐴 ) + 1 ) ↔ - ( ( ⌊ ‘ - 𝐴 ) + 1 ) < 𝐴 ) ) | |
| 18 | 16 17 | mpbid | ⊢ ( ( 𝐴 ∈ ℝ ∧ ( ( ⌊ ‘ - 𝐴 ) + 1 ) ∈ ℝ ) → - ( ( ⌊ ‘ - 𝐴 ) + 1 ) < 𝐴 ) |
| 19 | 13 18 | mpdan | ⊢ ( 𝐴 ∈ ℝ → - ( ( ⌊ ‘ - 𝐴 ) + 1 ) < 𝐴 ) |
| 20 | 11 19 | eqbrtrd | ⊢ ( 𝐴 ∈ ℝ → ( - ( ⌊ ‘ - 𝐴 ) − 1 ) < 𝐴 ) |