This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The ceiling of a real number is the smallest integer greater than or equal to it. (Contributed by Jeff Hankins, 10-Jun-2007)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ceile | |- ( ( A e. RR /\ B e. ZZ /\ A <_ B ) -> -u ( |_ ` -u A ) <_ B ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ceim1l | |- ( A e. RR -> ( -u ( |_ ` -u A ) - 1 ) < A ) |
|
| 2 | 1 | adantr | |- ( ( A e. RR /\ B e. ZZ ) -> ( -u ( |_ ` -u A ) - 1 ) < A ) |
| 3 | ceicl | |- ( A e. RR -> -u ( |_ ` -u A ) e. ZZ ) |
|
| 4 | zre | |- ( -u ( |_ ` -u A ) e. ZZ -> -u ( |_ ` -u A ) e. RR ) |
|
| 5 | peano2rem | |- ( -u ( |_ ` -u A ) e. RR -> ( -u ( |_ ` -u A ) - 1 ) e. RR ) |
|
| 6 | 3 4 5 | 3syl | |- ( A e. RR -> ( -u ( |_ ` -u A ) - 1 ) e. RR ) |
| 7 | 6 | adantr | |- ( ( A e. RR /\ B e. ZZ ) -> ( -u ( |_ ` -u A ) - 1 ) e. RR ) |
| 8 | simpl | |- ( ( A e. RR /\ B e. ZZ ) -> A e. RR ) |
|
| 9 | zre | |- ( B e. ZZ -> B e. RR ) |
|
| 10 | 9 | adantl | |- ( ( A e. RR /\ B e. ZZ ) -> B e. RR ) |
| 11 | ltletr | |- ( ( ( -u ( |_ ` -u A ) - 1 ) e. RR /\ A e. RR /\ B e. RR ) -> ( ( ( -u ( |_ ` -u A ) - 1 ) < A /\ A <_ B ) -> ( -u ( |_ ` -u A ) - 1 ) < B ) ) |
|
| 12 | 7 8 10 11 | syl3anc | |- ( ( A e. RR /\ B e. ZZ ) -> ( ( ( -u ( |_ ` -u A ) - 1 ) < A /\ A <_ B ) -> ( -u ( |_ ` -u A ) - 1 ) < B ) ) |
| 13 | 2 12 | mpand | |- ( ( A e. RR /\ B e. ZZ ) -> ( A <_ B -> ( -u ( |_ ` -u A ) - 1 ) < B ) ) |
| 14 | zlem1lt | |- ( ( -u ( |_ ` -u A ) e. ZZ /\ B e. ZZ ) -> ( -u ( |_ ` -u A ) <_ B <-> ( -u ( |_ ` -u A ) - 1 ) < B ) ) |
|
| 15 | 3 14 | sylan | |- ( ( A e. RR /\ B e. ZZ ) -> ( -u ( |_ ` -u A ) <_ B <-> ( -u ( |_ ` -u A ) - 1 ) < B ) ) |
| 16 | 13 15 | sylibrd | |- ( ( A e. RR /\ B e. ZZ ) -> ( A <_ B -> -u ( |_ ` -u A ) <_ B ) ) |
| 17 | 16 | 3impia | |- ( ( A e. RR /\ B e. ZZ /\ A <_ B ) -> -u ( |_ ` -u A ) <_ B ) |