This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The ceiling of a real number is the smallest integer greater than or equal to it. (Contributed by Jeff Hankins, 10-Jun-2007)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ceile | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℤ ∧ 𝐴 ≤ 𝐵 ) → - ( ⌊ ‘ - 𝐴 ) ≤ 𝐵 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ceim1l | ⊢ ( 𝐴 ∈ ℝ → ( - ( ⌊ ‘ - 𝐴 ) − 1 ) < 𝐴 ) | |
| 2 | 1 | adantr | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℤ ) → ( - ( ⌊ ‘ - 𝐴 ) − 1 ) < 𝐴 ) |
| 3 | ceicl | ⊢ ( 𝐴 ∈ ℝ → - ( ⌊ ‘ - 𝐴 ) ∈ ℤ ) | |
| 4 | zre | ⊢ ( - ( ⌊ ‘ - 𝐴 ) ∈ ℤ → - ( ⌊ ‘ - 𝐴 ) ∈ ℝ ) | |
| 5 | peano2rem | ⊢ ( - ( ⌊ ‘ - 𝐴 ) ∈ ℝ → ( - ( ⌊ ‘ - 𝐴 ) − 1 ) ∈ ℝ ) | |
| 6 | 3 4 5 | 3syl | ⊢ ( 𝐴 ∈ ℝ → ( - ( ⌊ ‘ - 𝐴 ) − 1 ) ∈ ℝ ) |
| 7 | 6 | adantr | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℤ ) → ( - ( ⌊ ‘ - 𝐴 ) − 1 ) ∈ ℝ ) |
| 8 | simpl | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℤ ) → 𝐴 ∈ ℝ ) | |
| 9 | zre | ⊢ ( 𝐵 ∈ ℤ → 𝐵 ∈ ℝ ) | |
| 10 | 9 | adantl | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℤ ) → 𝐵 ∈ ℝ ) |
| 11 | ltletr | ⊢ ( ( ( - ( ⌊ ‘ - 𝐴 ) − 1 ) ∈ ℝ ∧ 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( ( ( - ( ⌊ ‘ - 𝐴 ) − 1 ) < 𝐴 ∧ 𝐴 ≤ 𝐵 ) → ( - ( ⌊ ‘ - 𝐴 ) − 1 ) < 𝐵 ) ) | |
| 12 | 7 8 10 11 | syl3anc | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℤ ) → ( ( ( - ( ⌊ ‘ - 𝐴 ) − 1 ) < 𝐴 ∧ 𝐴 ≤ 𝐵 ) → ( - ( ⌊ ‘ - 𝐴 ) − 1 ) < 𝐵 ) ) |
| 13 | 2 12 | mpand | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℤ ) → ( 𝐴 ≤ 𝐵 → ( - ( ⌊ ‘ - 𝐴 ) − 1 ) < 𝐵 ) ) |
| 14 | zlem1lt | ⊢ ( ( - ( ⌊ ‘ - 𝐴 ) ∈ ℤ ∧ 𝐵 ∈ ℤ ) → ( - ( ⌊ ‘ - 𝐴 ) ≤ 𝐵 ↔ ( - ( ⌊ ‘ - 𝐴 ) − 1 ) < 𝐵 ) ) | |
| 15 | 3 14 | sylan | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℤ ) → ( - ( ⌊ ‘ - 𝐴 ) ≤ 𝐵 ↔ ( - ( ⌊ ‘ - 𝐴 ) − 1 ) < 𝐵 ) ) |
| 16 | 13 15 | sylibrd | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℤ ) → ( 𝐴 ≤ 𝐵 → - ( ⌊ ‘ - 𝐴 ) ≤ 𝐵 ) ) |
| 17 | 16 | 3impia | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℤ ∧ 𝐴 ≤ 𝐵 ) → - ( ⌊ ‘ - 𝐴 ) ≤ 𝐵 ) |