This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Membership in a half-open finite set of integers. (Contributed by Stefan O'Rear, 15-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | elfzo | |- ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) -> ( K e. ( M ..^ N ) <-> ( M <_ K /\ K < N ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | peano2zm | |- ( N e. ZZ -> ( N - 1 ) e. ZZ ) |
|
| 2 | elfz | |- ( ( K e. ZZ /\ M e. ZZ /\ ( N - 1 ) e. ZZ ) -> ( K e. ( M ... ( N - 1 ) ) <-> ( M <_ K /\ K <_ ( N - 1 ) ) ) ) |
|
| 3 | 1 2 | syl3an3 | |- ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) -> ( K e. ( M ... ( N - 1 ) ) <-> ( M <_ K /\ K <_ ( N - 1 ) ) ) ) |
| 4 | fzoval | |- ( N e. ZZ -> ( M ..^ N ) = ( M ... ( N - 1 ) ) ) |
|
| 5 | 4 | eleq2d | |- ( N e. ZZ -> ( K e. ( M ..^ N ) <-> K e. ( M ... ( N - 1 ) ) ) ) |
| 6 | 5 | 3ad2ant3 | |- ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) -> ( K e. ( M ..^ N ) <-> K e. ( M ... ( N - 1 ) ) ) ) |
| 7 | zltlem1 | |- ( ( K e. ZZ /\ N e. ZZ ) -> ( K < N <-> K <_ ( N - 1 ) ) ) |
|
| 8 | 7 | 3adant2 | |- ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) -> ( K < N <-> K <_ ( N - 1 ) ) ) |
| 9 | 8 | anbi2d | |- ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) -> ( ( M <_ K /\ K < N ) <-> ( M <_ K /\ K <_ ( N - 1 ) ) ) ) |
| 10 | 3 6 9 | 3bitr4d | |- ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) -> ( K e. ( M ..^ N ) <-> ( M <_ K /\ K < N ) ) ) |