This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A symbol at a position "outside" of a word. (Contributed by Alexander van der Vekens, 26-May-2018) (Proof shortened by AV, 2-May-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | wrdsymb0 | |- ( ( W e. Word V /\ I e. ZZ ) -> ( ( I < 0 \/ ( # ` W ) <_ I ) -> ( W ` I ) = (/) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | wrddm | |- ( W e. Word V -> dom W = ( 0 ..^ ( # ` W ) ) ) |
|
| 2 | lencl | |- ( W e. Word V -> ( # ` W ) e. NN0 ) |
|
| 3 | 2 | nn0zd | |- ( W e. Word V -> ( # ` W ) e. ZZ ) |
| 4 | simpr | |- ( ( ( # ` W ) e. ZZ /\ I e. ZZ ) -> I e. ZZ ) |
|
| 5 | 0zd | |- ( ( ( # ` W ) e. ZZ /\ I e. ZZ ) -> 0 e. ZZ ) |
|
| 6 | simpl | |- ( ( ( # ` W ) e. ZZ /\ I e. ZZ ) -> ( # ` W ) e. ZZ ) |
|
| 7 | nelfzo | |- ( ( I e. ZZ /\ 0 e. ZZ /\ ( # ` W ) e. ZZ ) -> ( I e/ ( 0 ..^ ( # ` W ) ) <-> ( I < 0 \/ ( # ` W ) <_ I ) ) ) |
|
| 8 | 4 5 6 7 | syl3anc | |- ( ( ( # ` W ) e. ZZ /\ I e. ZZ ) -> ( I e/ ( 0 ..^ ( # ` W ) ) <-> ( I < 0 \/ ( # ` W ) <_ I ) ) ) |
| 9 | 8 | biimpar | |- ( ( ( ( # ` W ) e. ZZ /\ I e. ZZ ) /\ ( I < 0 \/ ( # ` W ) <_ I ) ) -> I e/ ( 0 ..^ ( # ` W ) ) ) |
| 10 | df-nel | |- ( I e/ ( 0 ..^ ( # ` W ) ) <-> -. I e. ( 0 ..^ ( # ` W ) ) ) |
|
| 11 | 9 10 | sylib | |- ( ( ( ( # ` W ) e. ZZ /\ I e. ZZ ) /\ ( I < 0 \/ ( # ` W ) <_ I ) ) -> -. I e. ( 0 ..^ ( # ` W ) ) ) |
| 12 | eleq2 | |- ( dom W = ( 0 ..^ ( # ` W ) ) -> ( I e. dom W <-> I e. ( 0 ..^ ( # ` W ) ) ) ) |
|
| 13 | 12 | notbid | |- ( dom W = ( 0 ..^ ( # ` W ) ) -> ( -. I e. dom W <-> -. I e. ( 0 ..^ ( # ` W ) ) ) ) |
| 14 | 11 13 | imbitrrid | |- ( dom W = ( 0 ..^ ( # ` W ) ) -> ( ( ( ( # ` W ) e. ZZ /\ I e. ZZ ) /\ ( I < 0 \/ ( # ` W ) <_ I ) ) -> -. I e. dom W ) ) |
| 15 | 14 | exp4c | |- ( dom W = ( 0 ..^ ( # ` W ) ) -> ( ( # ` W ) e. ZZ -> ( I e. ZZ -> ( ( I < 0 \/ ( # ` W ) <_ I ) -> -. I e. dom W ) ) ) ) |
| 16 | 1 3 15 | sylc | |- ( W e. Word V -> ( I e. ZZ -> ( ( I < 0 \/ ( # ` W ) <_ I ) -> -. I e. dom W ) ) ) |
| 17 | 16 | imp | |- ( ( W e. Word V /\ I e. ZZ ) -> ( ( I < 0 \/ ( # ` W ) <_ I ) -> -. I e. dom W ) ) |
| 18 | ndmfv | |- ( -. I e. dom W -> ( W ` I ) = (/) ) |
|
| 19 | 17 18 | syl6 | |- ( ( W e. Word V /\ I e. ZZ ) -> ( ( I < 0 \/ ( # ` W ) <_ I ) -> ( W ` I ) = (/) ) ) |