This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Define the set of Cauchy sequences on a given extended metric space. (Contributed by NM, 8-Sep-2006)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-cau | |- Cau = ( d e. U. ran *Met |-> { f e. ( dom dom d ^pm CC ) | A. x e. RR+ E. j e. ZZ ( f |` ( ZZ>= ` j ) ) : ( ZZ>= ` j ) --> ( ( f ` j ) ( ball ` d ) x ) } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | ccau | |- Cau |
|
| 1 | vd | |- d |
|
| 2 | cxmet | |- *Met |
|
| 3 | 2 | crn | |- ran *Met |
| 4 | 3 | cuni | |- U. ran *Met |
| 5 | vf | |- f |
|
| 6 | 1 | cv | |- d |
| 7 | 6 | cdm | |- dom d |
| 8 | 7 | cdm | |- dom dom d |
| 9 | cpm | |- ^pm |
|
| 10 | cc | |- CC |
|
| 11 | 8 10 9 | co | |- ( dom dom d ^pm CC ) |
| 12 | vx | |- x |
|
| 13 | crp | |- RR+ |
|
| 14 | vj | |- j |
|
| 15 | cz | |- ZZ |
|
| 16 | 5 | cv | |- f |
| 17 | cuz | |- ZZ>= |
|
| 18 | 14 | cv | |- j |
| 19 | 18 17 | cfv | |- ( ZZ>= ` j ) |
| 20 | 16 19 | cres | |- ( f |` ( ZZ>= ` j ) ) |
| 21 | 18 16 | cfv | |- ( f ` j ) |
| 22 | cbl | |- ball |
|
| 23 | 6 22 | cfv | |- ( ball ` d ) |
| 24 | 12 | cv | |- x |
| 25 | 21 24 23 | co | |- ( ( f ` j ) ( ball ` d ) x ) |
| 26 | 19 25 20 | wf | |- ( f |` ( ZZ>= ` j ) ) : ( ZZ>= ` j ) --> ( ( f ` j ) ( ball ` d ) x ) |
| 27 | 26 14 15 | wrex | |- E. j e. ZZ ( f |` ( ZZ>= ` j ) ) : ( ZZ>= ` j ) --> ( ( f ` j ) ( ball ` d ) x ) |
| 28 | 27 12 13 | wral | |- A. x e. RR+ E. j e. ZZ ( f |` ( ZZ>= ` j ) ) : ( ZZ>= ` j ) --> ( ( f ` j ) ( ball ` d ) x ) |
| 29 | 28 5 11 | crab | |- { f e. ( dom dom d ^pm CC ) | A. x e. RR+ E. j e. ZZ ( f |` ( ZZ>= ` j ) ) : ( ZZ>= ` j ) --> ( ( f ` j ) ( ball ` d ) x ) } |
| 30 | 1 4 29 | cmpt | |- ( d e. U. ran *Met |-> { f e. ( dom dom d ^pm CC ) | A. x e. RR+ E. j e. ZZ ( f |` ( ZZ>= ` j ) ) : ( ZZ>= ` j ) --> ( ( f ` j ) ( ball ` d ) x ) } ) |
| 31 | 0 30 | wceq | |- Cau = ( d e. U. ran *Met |-> { f e. ( dom dom d ^pm CC ) | A. x e. RR+ E. j e. ZZ ( f |` ( ZZ>= ` j ) ) : ( ZZ>= ` j ) --> ( ( f ` j ) ( ball ` d ) x ) } ) |