This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Convert an operation distributive law to class notation. (Contributed by NM, 25-Aug-1995) (Revised by Mario Carneiro, 28-Jun-2013)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | caovdi.1 | |- A e. _V |
|
| caovdi.2 | |- B e. _V |
||
| caovdi.3 | |- C e. _V |
||
| caovdi.4 | |- ( x G ( y F z ) ) = ( ( x G y ) F ( x G z ) ) |
||
| Assertion | caovdi | |- ( A G ( B F C ) ) = ( ( A G B ) F ( A G C ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | caovdi.1 | |- A e. _V |
|
| 2 | caovdi.2 | |- B e. _V |
|
| 3 | caovdi.3 | |- C e. _V |
|
| 4 | caovdi.4 | |- ( x G ( y F z ) ) = ( ( x G y ) F ( x G z ) ) |
|
| 5 | tru | |- T. |
|
| 6 | 4 | a1i | |- ( ( T. /\ ( x e. _V /\ y e. _V /\ z e. _V ) ) -> ( x G ( y F z ) ) = ( ( x G y ) F ( x G z ) ) ) |
| 7 | 6 | caovdig | |- ( ( T. /\ ( A e. _V /\ B e. _V /\ C e. _V ) ) -> ( A G ( B F C ) ) = ( ( A G B ) F ( A G C ) ) ) |
| 8 | 5 7 | mpan | |- ( ( A e. _V /\ B e. _V /\ C e. _V ) -> ( A G ( B F C ) ) = ( ( A G B ) F ( A G C ) ) ) |
| 9 | 1 2 3 8 | mp3an | |- ( A G ( B F C ) ) = ( ( A G B ) F ( A G C ) ) |