This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for cantnf . (Contributed by Mario Carneiro, 4-Jun-2015) (Revised by AV, 2-Jul-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cantnfs.s | ||
| cantnfs.a | |||
| cantnfs.b | |||
| oemapval.t | |||
| oemapval.f | |||
| oemapval.g | |||
| oemapvali.r | |||
| oemapvali.x | |||
| Assertion | cantnflem1a |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cantnfs.s | ||
| 2 | cantnfs.a | ||
| 3 | cantnfs.b | ||
| 4 | oemapval.t | ||
| 5 | oemapval.f | ||
| 6 | oemapval.g | ||
| 7 | oemapvali.r | ||
| 8 | oemapvali.x | ||
| 9 | 1 2 3 4 5 6 7 8 | oemapvali | |
| 10 | 9 | simp1d | |
| 11 | 9 | simp2d | |
| 12 | 11 | ne0d | |
| 13 | 1 2 3 | cantnfs | |
| 14 | 6 13 | mpbid | |
| 15 | 14 | simpld | |
| 16 | 15 | ffnd | |
| 17 | 0ex | ||
| 18 | 17 | a1i | |
| 19 | elsuppfn | ||
| 20 | 16 3 18 19 | syl3anc | |
| 21 | 10 12 20 | mpbir2and |