This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: No set A is equinumerous to its power set (Cantor's theorem), i.e., no function can map A onto its power set. Compare Theorem 6B(b) of Enderton p. 132. For the equinumerosity version, see canth2 . Note that A must be a set: this theorem does not hold when A is too large to be a set; see ncanth for a counterexample. (Use nex if you want the form -. E. f f : A -onto-> ~P A .) (Contributed by NM, 7-Aug-1994) (Proof shortened by Mario Carneiro, 7-Jun-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | canth.1 | |- A e. _V |
|
| Assertion | canth | |- -. F : A -onto-> ~P A |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | canth.1 | |- A e. _V |
|
| 2 | ssrab2 | |- { x e. A | -. x e. ( F ` x ) } C_ A |
|
| 3 | 1 2 | elpwi2 | |- { x e. A | -. x e. ( F ` x ) } e. ~P A |
| 4 | forn | |- ( F : A -onto-> ~P A -> ran F = ~P A ) |
|
| 5 | 3 4 | eleqtrrid | |- ( F : A -onto-> ~P A -> { x e. A | -. x e. ( F ` x ) } e. ran F ) |
| 6 | id | |- ( x = y -> x = y ) |
|
| 7 | fveq2 | |- ( x = y -> ( F ` x ) = ( F ` y ) ) |
|
| 8 | 6 7 | eleq12d | |- ( x = y -> ( x e. ( F ` x ) <-> y e. ( F ` y ) ) ) |
| 9 | 8 | notbid | |- ( x = y -> ( -. x e. ( F ` x ) <-> -. y e. ( F ` y ) ) ) |
| 10 | 9 | elrab | |- ( y e. { x e. A | -. x e. ( F ` x ) } <-> ( y e. A /\ -. y e. ( F ` y ) ) ) |
| 11 | 10 | baibr | |- ( y e. A -> ( -. y e. ( F ` y ) <-> y e. { x e. A | -. x e. ( F ` x ) } ) ) |
| 12 | nbbn | |- ( ( -. y e. ( F ` y ) <-> y e. { x e. A | -. x e. ( F ` x ) } ) <-> -. ( y e. ( F ` y ) <-> y e. { x e. A | -. x e. ( F ` x ) } ) ) |
|
| 13 | 11 12 | sylib | |- ( y e. A -> -. ( y e. ( F ` y ) <-> y e. { x e. A | -. x e. ( F ` x ) } ) ) |
| 14 | eleq2 | |- ( ( F ` y ) = { x e. A | -. x e. ( F ` x ) } -> ( y e. ( F ` y ) <-> y e. { x e. A | -. x e. ( F ` x ) } ) ) |
|
| 15 | 13 14 | nsyl | |- ( y e. A -> -. ( F ` y ) = { x e. A | -. x e. ( F ` x ) } ) |
| 16 | 15 | nrex | |- -. E. y e. A ( F ` y ) = { x e. A | -. x e. ( F ` x ) } |
| 17 | fofn | |- ( F : A -onto-> ~P A -> F Fn A ) |
|
| 18 | fvelrnb | |- ( F Fn A -> ( { x e. A | -. x e. ( F ` x ) } e. ran F <-> E. y e. A ( F ` y ) = { x e. A | -. x e. ( F ` x ) } ) ) |
|
| 19 | 17 18 | syl | |- ( F : A -onto-> ~P A -> ( { x e. A | -. x e. ( F ` x ) } e. ran F <-> E. y e. A ( F ` y ) = { x e. A | -. x e. ( F ` x ) } ) ) |
| 20 | 16 19 | mtbiri | |- ( F : A -onto-> ~P A -> -. { x e. A | -. x e. ( F ` x ) } e. ran F ) |
| 21 | 5 20 | pm2.65i | |- -. F : A -onto-> ~P A |