This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The relation "is isomorphic to" for (unital) rings. This theorem corresponds to Definition df-risc of the ring isomorphism relation in JM's mathbox. (Contributed by AV, 24-Dec-2019)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | brric2 | |- ( R ~=r S <-> ( ( R e. Ring /\ S e. Ring ) /\ E. f f e. ( R RingIso S ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | brric | |- ( R ~=r S <-> ( R RingIso S ) =/= (/) ) |
|
| 2 | n0 | |- ( ( R RingIso S ) =/= (/) <-> E. f f e. ( R RingIso S ) ) |
|
| 3 | rimrhm | |- ( f e. ( R RingIso S ) -> f e. ( R RingHom S ) ) |
|
| 4 | eqid | |- ( mulGrp ` R ) = ( mulGrp ` R ) |
|
| 5 | eqid | |- ( mulGrp ` S ) = ( mulGrp ` S ) |
|
| 6 | 4 5 | isrhm | |- ( f e. ( R RingHom S ) <-> ( ( R e. Ring /\ S e. Ring ) /\ ( f e. ( R GrpHom S ) /\ f e. ( ( mulGrp ` R ) MndHom ( mulGrp ` S ) ) ) ) ) |
| 7 | 6 | simplbi | |- ( f e. ( R RingHom S ) -> ( R e. Ring /\ S e. Ring ) ) |
| 8 | 3 7 | syl | |- ( f e. ( R RingIso S ) -> ( R e. Ring /\ S e. Ring ) ) |
| 9 | 8 | exlimiv | |- ( E. f f e. ( R RingIso S ) -> ( R e. Ring /\ S e. Ring ) ) |
| 10 | 9 | pm4.71ri | |- ( E. f f e. ( R RingIso S ) <-> ( ( R e. Ring /\ S e. Ring ) /\ E. f f e. ( R RingIso S ) ) ) |
| 11 | 1 2 10 | 3bitri | |- ( R ~=r S <-> ( ( R e. Ring /\ S e. Ring ) /\ E. f f e. ( R RingIso S ) ) ) |