This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The relation "is isomorphic to" for (unital) rings. This theorem corresponds to Definition df-risc of the ring isomorphism relation in JM's mathbox. (Contributed by AV, 24-Dec-2019)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | brric2 | ⊢ ( 𝑅 ≃𝑟 𝑆 ↔ ( ( 𝑅 ∈ Ring ∧ 𝑆 ∈ Ring ) ∧ ∃ 𝑓 𝑓 ∈ ( 𝑅 RingIso 𝑆 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | brric | ⊢ ( 𝑅 ≃𝑟 𝑆 ↔ ( 𝑅 RingIso 𝑆 ) ≠ ∅ ) | |
| 2 | n0 | ⊢ ( ( 𝑅 RingIso 𝑆 ) ≠ ∅ ↔ ∃ 𝑓 𝑓 ∈ ( 𝑅 RingIso 𝑆 ) ) | |
| 3 | rimrhm | ⊢ ( 𝑓 ∈ ( 𝑅 RingIso 𝑆 ) → 𝑓 ∈ ( 𝑅 RingHom 𝑆 ) ) | |
| 4 | eqid | ⊢ ( mulGrp ‘ 𝑅 ) = ( mulGrp ‘ 𝑅 ) | |
| 5 | eqid | ⊢ ( mulGrp ‘ 𝑆 ) = ( mulGrp ‘ 𝑆 ) | |
| 6 | 4 5 | isrhm | ⊢ ( 𝑓 ∈ ( 𝑅 RingHom 𝑆 ) ↔ ( ( 𝑅 ∈ Ring ∧ 𝑆 ∈ Ring ) ∧ ( 𝑓 ∈ ( 𝑅 GrpHom 𝑆 ) ∧ 𝑓 ∈ ( ( mulGrp ‘ 𝑅 ) MndHom ( mulGrp ‘ 𝑆 ) ) ) ) ) |
| 7 | 6 | simplbi | ⊢ ( 𝑓 ∈ ( 𝑅 RingHom 𝑆 ) → ( 𝑅 ∈ Ring ∧ 𝑆 ∈ Ring ) ) |
| 8 | 3 7 | syl | ⊢ ( 𝑓 ∈ ( 𝑅 RingIso 𝑆 ) → ( 𝑅 ∈ Ring ∧ 𝑆 ∈ Ring ) ) |
| 9 | 8 | exlimiv | ⊢ ( ∃ 𝑓 𝑓 ∈ ( 𝑅 RingIso 𝑆 ) → ( 𝑅 ∈ Ring ∧ 𝑆 ∈ Ring ) ) |
| 10 | 9 | pm4.71ri | ⊢ ( ∃ 𝑓 𝑓 ∈ ( 𝑅 RingIso 𝑆 ) ↔ ( ( 𝑅 ∈ Ring ∧ 𝑆 ∈ Ring ) ∧ ∃ 𝑓 𝑓 ∈ ( 𝑅 RingIso 𝑆 ) ) ) |
| 11 | 1 2 10 | 3bitri | ⊢ ( 𝑅 ≃𝑟 𝑆 ↔ ( ( 𝑅 ∈ Ring ∧ 𝑆 ∈ Ring ) ∧ ∃ 𝑓 𝑓 ∈ ( 𝑅 RingIso 𝑆 ) ) ) |