This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An implicit substitution inference for 4 general classes. (Contributed by NM, 5-Aug-1995) Avoid ax-10 , ax-11 . (Revised by GG, 28-Jun-2024) Avoid ax-9 , ax-ext . (Revised by Wolf Lammen, 21-Mar-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cgsex4g.1 | |- ( ( ( x = A /\ y = B ) /\ ( z = C /\ w = D ) ) -> ch ) |
|
| cgsex4g.2 | |- ( ch -> ( ph <-> ps ) ) |
||
| Assertion | cgsex4g | |- ( ( ( A e. R /\ B e. S ) /\ ( C e. R /\ D e. S ) ) -> ( E. x E. y E. z E. w ( ch /\ ph ) <-> ps ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cgsex4g.1 | |- ( ( ( x = A /\ y = B ) /\ ( z = C /\ w = D ) ) -> ch ) |
|
| 2 | cgsex4g.2 | |- ( ch -> ( ph <-> ps ) ) |
|
| 3 | 2 | biimpa | |- ( ( ch /\ ph ) -> ps ) |
| 4 | 3 | exlimivv | |- ( E. z E. w ( ch /\ ph ) -> ps ) |
| 5 | 4 | exlimivv | |- ( E. x E. y E. z E. w ( ch /\ ph ) -> ps ) |
| 6 | elisset | |- ( A e. R -> E. x x = A ) |
|
| 7 | elisset | |- ( B e. S -> E. y y = B ) |
|
| 8 | 6 7 | anim12i | |- ( ( A e. R /\ B e. S ) -> ( E. x x = A /\ E. y y = B ) ) |
| 9 | elisset | |- ( C e. R -> E. z z = C ) |
|
| 10 | elisset | |- ( D e. S -> E. w w = D ) |
|
| 11 | 9 10 | anim12i | |- ( ( C e. R /\ D e. S ) -> ( E. z z = C /\ E. w w = D ) ) |
| 12 | 8 11 | anim12i | |- ( ( ( A e. R /\ B e. S ) /\ ( C e. R /\ D e. S ) ) -> ( ( E. x x = A /\ E. y y = B ) /\ ( E. z z = C /\ E. w w = D ) ) ) |
| 13 | 19.42vv | |- ( E. z E. w ( ( x = A /\ y = B ) /\ ( z = C /\ w = D ) ) <-> ( ( x = A /\ y = B ) /\ E. z E. w ( z = C /\ w = D ) ) ) |
|
| 14 | 13 | 2exbii | |- ( E. x E. y E. z E. w ( ( x = A /\ y = B ) /\ ( z = C /\ w = D ) ) <-> E. x E. y ( ( x = A /\ y = B ) /\ E. z E. w ( z = C /\ w = D ) ) ) |
| 15 | 19.41vv | |- ( E. x E. y ( ( x = A /\ y = B ) /\ E. z E. w ( z = C /\ w = D ) ) <-> ( E. x E. y ( x = A /\ y = B ) /\ E. z E. w ( z = C /\ w = D ) ) ) |
|
| 16 | exdistrv | |- ( E. x E. y ( x = A /\ y = B ) <-> ( E. x x = A /\ E. y y = B ) ) |
|
| 17 | exdistrv | |- ( E. z E. w ( z = C /\ w = D ) <-> ( E. z z = C /\ E. w w = D ) ) |
|
| 18 | 16 17 | anbi12i | |- ( ( E. x E. y ( x = A /\ y = B ) /\ E. z E. w ( z = C /\ w = D ) ) <-> ( ( E. x x = A /\ E. y y = B ) /\ ( E. z z = C /\ E. w w = D ) ) ) |
| 19 | 14 15 18 | 3bitri | |- ( E. x E. y E. z E. w ( ( x = A /\ y = B ) /\ ( z = C /\ w = D ) ) <-> ( ( E. x x = A /\ E. y y = B ) /\ ( E. z z = C /\ E. w w = D ) ) ) |
| 20 | 12 19 | sylibr | |- ( ( ( A e. R /\ B e. S ) /\ ( C e. R /\ D e. S ) ) -> E. x E. y E. z E. w ( ( x = A /\ y = B ) /\ ( z = C /\ w = D ) ) ) |
| 21 | 1 | 2eximi | |- ( E. z E. w ( ( x = A /\ y = B ) /\ ( z = C /\ w = D ) ) -> E. z E. w ch ) |
| 22 | 21 | 2eximi | |- ( E. x E. y E. z E. w ( ( x = A /\ y = B ) /\ ( z = C /\ w = D ) ) -> E. x E. y E. z E. w ch ) |
| 23 | 20 22 | syl | |- ( ( ( A e. R /\ B e. S ) /\ ( C e. R /\ D e. S ) ) -> E. x E. y E. z E. w ch ) |
| 24 | 2 | biimprcd | |- ( ps -> ( ch -> ph ) ) |
| 25 | 24 | ancld | |- ( ps -> ( ch -> ( ch /\ ph ) ) ) |
| 26 | 25 | 2eximdv | |- ( ps -> ( E. z E. w ch -> E. z E. w ( ch /\ ph ) ) ) |
| 27 | 26 | 2eximdv | |- ( ps -> ( E. x E. y E. z E. w ch -> E. x E. y E. z E. w ( ch /\ ph ) ) ) |
| 28 | 23 27 | syl5com | |- ( ( ( A e. R /\ B e. S ) /\ ( C e. R /\ D e. S ) ) -> ( ps -> E. x E. y E. z E. w ( ch /\ ph ) ) ) |
| 29 | 5 28 | impbid2 | |- ( ( ( A e. R /\ B e. S ) /\ ( C e. R /\ D e. S ) ) -> ( E. x E. y E. z E. w ( ch /\ ph ) <-> ps ) ) |