This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A one-to-one onto function in terms of function values. (Contributed by NM, 29-Mar-2008)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | dff1o6 | |- ( F : A -1-1-onto-> B <-> ( F Fn A /\ ran F = B /\ A. x e. A A. y e. A ( ( F ` x ) = ( F ` y ) -> x = y ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-f1o | |- ( F : A -1-1-onto-> B <-> ( F : A -1-1-> B /\ F : A -onto-> B ) ) |
|
| 2 | dff13 | |- ( F : A -1-1-> B <-> ( F : A --> B /\ A. x e. A A. y e. A ( ( F ` x ) = ( F ` y ) -> x = y ) ) ) |
|
| 3 | df-fo | |- ( F : A -onto-> B <-> ( F Fn A /\ ran F = B ) ) |
|
| 4 | 2 3 | anbi12i | |- ( ( F : A -1-1-> B /\ F : A -onto-> B ) <-> ( ( F : A --> B /\ A. x e. A A. y e. A ( ( F ` x ) = ( F ` y ) -> x = y ) ) /\ ( F Fn A /\ ran F = B ) ) ) |
| 5 | df-3an | |- ( ( F Fn A /\ ran F = B /\ A. x e. A A. y e. A ( ( F ` x ) = ( F ` y ) -> x = y ) ) <-> ( ( F Fn A /\ ran F = B ) /\ A. x e. A A. y e. A ( ( F ` x ) = ( F ` y ) -> x = y ) ) ) |
|
| 6 | eqimss | |- ( ran F = B -> ran F C_ B ) |
|
| 7 | 6 | anim2i | |- ( ( F Fn A /\ ran F = B ) -> ( F Fn A /\ ran F C_ B ) ) |
| 8 | df-f | |- ( F : A --> B <-> ( F Fn A /\ ran F C_ B ) ) |
|
| 9 | 7 8 | sylibr | |- ( ( F Fn A /\ ran F = B ) -> F : A --> B ) |
| 10 | 9 | pm4.71ri | |- ( ( F Fn A /\ ran F = B ) <-> ( F : A --> B /\ ( F Fn A /\ ran F = B ) ) ) |
| 11 | 10 | anbi1i | |- ( ( ( F Fn A /\ ran F = B ) /\ A. x e. A A. y e. A ( ( F ` x ) = ( F ` y ) -> x = y ) ) <-> ( ( F : A --> B /\ ( F Fn A /\ ran F = B ) ) /\ A. x e. A A. y e. A ( ( F ` x ) = ( F ` y ) -> x = y ) ) ) |
| 12 | an32 | |- ( ( ( F : A --> B /\ ( F Fn A /\ ran F = B ) ) /\ A. x e. A A. y e. A ( ( F ` x ) = ( F ` y ) -> x = y ) ) <-> ( ( F : A --> B /\ A. x e. A A. y e. A ( ( F ` x ) = ( F ` y ) -> x = y ) ) /\ ( F Fn A /\ ran F = B ) ) ) |
|
| 13 | 5 11 12 | 3bitrri | |- ( ( ( F : A --> B /\ A. x e. A A. y e. A ( ( F ` x ) = ( F ` y ) -> x = y ) ) /\ ( F Fn A /\ ran F = B ) ) <-> ( F Fn A /\ ran F = B /\ A. x e. A A. y e. A ( ( F ` x ) = ( F ` y ) -> x = y ) ) ) |
| 14 | 1 4 13 | 3bitri | |- ( F : A -1-1-onto-> B <-> ( F Fn A /\ ran F = B /\ A. x e. A A. y e. A ( ( F ` x ) = ( F ` y ) -> x = y ) ) ) |