This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Restricted quantifier version of 19.35 . (Contributed by NM, 20-Sep-2003) (Proof shortened by Wolf Lammen, 22-Dec-2024)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | r19.35 | |- ( E. x e. A ( ph -> ps ) <-> ( A. x e. A ph -> E. x e. A ps ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pm5.5 | |- ( ph -> ( ( ph -> ps ) <-> ps ) ) |
|
| 2 | 1 | ralrexbid | |- ( A. x e. A ph -> ( E. x e. A ( ph -> ps ) <-> E. x e. A ps ) ) |
| 3 | 2 | biimpcd | |- ( E. x e. A ( ph -> ps ) -> ( A. x e. A ph -> E. x e. A ps ) ) |
| 4 | rexnal | |- ( E. x e. A -. ph <-> -. A. x e. A ph ) |
|
| 5 | pm2.21 | |- ( -. ph -> ( ph -> ps ) ) |
|
| 6 | 5 | reximi | |- ( E. x e. A -. ph -> E. x e. A ( ph -> ps ) ) |
| 7 | 4 6 | sylbir | |- ( -. A. x e. A ph -> E. x e. A ( ph -> ps ) ) |
| 8 | ax-1 | |- ( ps -> ( ph -> ps ) ) |
|
| 9 | 8 | reximi | |- ( E. x e. A ps -> E. x e. A ( ph -> ps ) ) |
| 10 | 7 9 | ja | |- ( ( A. x e. A ph -> E. x e. A ps ) -> E. x e. A ( ph -> ps ) ) |
| 11 | 3 10 | impbii | |- ( E. x e. A ( ph -> ps ) <-> ( A. x e. A ph -> E. x e. A ps ) ) |