This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Base set of the monoid of endomorphisms on an object of a category. (Contributed by BJ, 5-Apr-2024) (Proof modification is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | bj-endval.c | |- ( ph -> C e. Cat ) |
|
| bj-endval.x | |- ( ph -> X e. ( Base ` C ) ) |
||
| Assertion | bj-endbase | |- ( ph -> ( Base ` ( ( End ` C ) ` X ) ) = ( X ( Hom ` C ) X ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bj-endval.c | |- ( ph -> C e. Cat ) |
|
| 2 | bj-endval.x | |- ( ph -> X e. ( Base ` C ) ) |
|
| 3 | baseid | |- Base = Slot ( Base ` ndx ) |
|
| 4 | fvexd | |- ( ph -> ( ( End ` C ) ` X ) e. _V ) |
|
| 5 | 3 4 | strfvnd | |- ( ph -> ( Base ` ( ( End ` C ) ` X ) ) = ( ( ( End ` C ) ` X ) ` ( Base ` ndx ) ) ) |
| 6 | 1 2 | bj-endval | |- ( ph -> ( ( End ` C ) ` X ) = { <. ( Base ` ndx ) , ( X ( Hom ` C ) X ) >. , <. ( +g ` ndx ) , ( <. X , X >. ( comp ` C ) X ) >. } ) |
| 7 | 6 | fveq1d | |- ( ph -> ( ( ( End ` C ) ` X ) ` ( Base ` ndx ) ) = ( { <. ( Base ` ndx ) , ( X ( Hom ` C ) X ) >. , <. ( +g ` ndx ) , ( <. X , X >. ( comp ` C ) X ) >. } ` ( Base ` ndx ) ) ) |
| 8 | basendxnplusgndx | |- ( Base ` ndx ) =/= ( +g ` ndx ) |
|
| 9 | fvex | |- ( Base ` ndx ) e. _V |
|
| 10 | ovex | |- ( X ( Hom ` C ) X ) e. _V |
|
| 11 | 9 10 | fvpr1 | |- ( ( Base ` ndx ) =/= ( +g ` ndx ) -> ( { <. ( Base ` ndx ) , ( X ( Hom ` C ) X ) >. , <. ( +g ` ndx ) , ( <. X , X >. ( comp ` C ) X ) >. } ` ( Base ` ndx ) ) = ( X ( Hom ` C ) X ) ) |
| 12 | 8 11 | mp1i | |- ( ph -> ( { <. ( Base ` ndx ) , ( X ( Hom ` C ) X ) >. , <. ( +g ` ndx ) , ( <. X , X >. ( comp ` C ) X ) >. } ` ( Base ` ndx ) ) = ( X ( Hom ` C ) X ) ) |
| 13 | 5 7 12 | 3eqtrd | |- ( ph -> ( Base ` ( ( End ` C ) ` X ) ) = ( X ( Hom ` C ) X ) ) |