This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The Brahmagupta-Fibonacci identity. Express the product of two sums of two squares as a sum of two squares. First result. Remark: The proof uses a different approach than the proof of bhmafibid1cn , and is a little bit shorter. (Contributed by Thierry Arnoux, 1-Feb-2020) (Proof modification is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | bhmafibid1 | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ ) ) → ( ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) · ( ( 𝐶 ↑ 2 ) + ( 𝐷 ↑ 2 ) ) ) = ( ( ( ( 𝐴 · 𝐶 ) − ( 𝐵 · 𝐷 ) ) ↑ 2 ) + ( ( ( 𝐴 · 𝐷 ) + ( 𝐵 · 𝐶 ) ) ↑ 2 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpll | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ ) ) → 𝐴 ∈ ℝ ) | |
| 2 | 1 | recnd | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ ) ) → 𝐴 ∈ ℂ ) |
| 3 | ax-icn | ⊢ i ∈ ℂ | |
| 4 | 3 | a1i | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ ) ) → i ∈ ℂ ) |
| 5 | simplr | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ ) ) → 𝐵 ∈ ℝ ) | |
| 6 | 5 | recnd | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ ) ) → 𝐵 ∈ ℂ ) |
| 7 | 4 6 | mulcld | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ ) ) → ( i · 𝐵 ) ∈ ℂ ) |
| 8 | 2 7 | addcld | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ ) ) → ( 𝐴 + ( i · 𝐵 ) ) ∈ ℂ ) |
| 9 | simprl | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ ) ) → 𝐶 ∈ ℝ ) | |
| 10 | 9 | recnd | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ ) ) → 𝐶 ∈ ℂ ) |
| 11 | simprr | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ ) ) → 𝐷 ∈ ℝ ) | |
| 12 | 11 | recnd | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ ) ) → 𝐷 ∈ ℂ ) |
| 13 | 4 12 | mulcld | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ ) ) → ( i · 𝐷 ) ∈ ℂ ) |
| 14 | 10 13 | addcld | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ ) ) → ( 𝐶 + ( i · 𝐷 ) ) ∈ ℂ ) |
| 15 | 8 14 | mulcld | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ ) ) → ( ( 𝐴 + ( i · 𝐵 ) ) · ( 𝐶 + ( i · 𝐷 ) ) ) ∈ ℂ ) |
| 16 | 15 | replimd | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ ) ) → ( ( 𝐴 + ( i · 𝐵 ) ) · ( 𝐶 + ( i · 𝐷 ) ) ) = ( ( ℜ ‘ ( ( 𝐴 + ( i · 𝐵 ) ) · ( 𝐶 + ( i · 𝐷 ) ) ) ) + ( i · ( ℑ ‘ ( ( 𝐴 + ( i · 𝐵 ) ) · ( 𝐶 + ( i · 𝐷 ) ) ) ) ) ) ) |
| 17 | 8 14 | remuld | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ ) ) → ( ℜ ‘ ( ( 𝐴 + ( i · 𝐵 ) ) · ( 𝐶 + ( i · 𝐷 ) ) ) ) = ( ( ( ℜ ‘ ( 𝐴 + ( i · 𝐵 ) ) ) · ( ℜ ‘ ( 𝐶 + ( i · 𝐷 ) ) ) ) − ( ( ℑ ‘ ( 𝐴 + ( i · 𝐵 ) ) ) · ( ℑ ‘ ( 𝐶 + ( i · 𝐷 ) ) ) ) ) ) |
| 18 | 1 5 | crred | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ ) ) → ( ℜ ‘ ( 𝐴 + ( i · 𝐵 ) ) ) = 𝐴 ) |
| 19 | 9 11 | crred | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ ) ) → ( ℜ ‘ ( 𝐶 + ( i · 𝐷 ) ) ) = 𝐶 ) |
| 20 | 18 19 | oveq12d | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ ) ) → ( ( ℜ ‘ ( 𝐴 + ( i · 𝐵 ) ) ) · ( ℜ ‘ ( 𝐶 + ( i · 𝐷 ) ) ) ) = ( 𝐴 · 𝐶 ) ) |
| 21 | 1 5 | crimd | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ ) ) → ( ℑ ‘ ( 𝐴 + ( i · 𝐵 ) ) ) = 𝐵 ) |
| 22 | 9 11 | crimd | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ ) ) → ( ℑ ‘ ( 𝐶 + ( i · 𝐷 ) ) ) = 𝐷 ) |
| 23 | 21 22 | oveq12d | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ ) ) → ( ( ℑ ‘ ( 𝐴 + ( i · 𝐵 ) ) ) · ( ℑ ‘ ( 𝐶 + ( i · 𝐷 ) ) ) ) = ( 𝐵 · 𝐷 ) ) |
| 24 | 20 23 | oveq12d | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ ) ) → ( ( ( ℜ ‘ ( 𝐴 + ( i · 𝐵 ) ) ) · ( ℜ ‘ ( 𝐶 + ( i · 𝐷 ) ) ) ) − ( ( ℑ ‘ ( 𝐴 + ( i · 𝐵 ) ) ) · ( ℑ ‘ ( 𝐶 + ( i · 𝐷 ) ) ) ) ) = ( ( 𝐴 · 𝐶 ) − ( 𝐵 · 𝐷 ) ) ) |
| 25 | 17 24 | eqtrd | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ ) ) → ( ℜ ‘ ( ( 𝐴 + ( i · 𝐵 ) ) · ( 𝐶 + ( i · 𝐷 ) ) ) ) = ( ( 𝐴 · 𝐶 ) − ( 𝐵 · 𝐷 ) ) ) |
| 26 | 8 14 | immuld | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ ) ) → ( ℑ ‘ ( ( 𝐴 + ( i · 𝐵 ) ) · ( 𝐶 + ( i · 𝐷 ) ) ) ) = ( ( ( ℜ ‘ ( 𝐴 + ( i · 𝐵 ) ) ) · ( ℑ ‘ ( 𝐶 + ( i · 𝐷 ) ) ) ) + ( ( ℑ ‘ ( 𝐴 + ( i · 𝐵 ) ) ) · ( ℜ ‘ ( 𝐶 + ( i · 𝐷 ) ) ) ) ) ) |
| 27 | 18 22 | oveq12d | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ ) ) → ( ( ℜ ‘ ( 𝐴 + ( i · 𝐵 ) ) ) · ( ℑ ‘ ( 𝐶 + ( i · 𝐷 ) ) ) ) = ( 𝐴 · 𝐷 ) ) |
| 28 | 21 19 | oveq12d | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ ) ) → ( ( ℑ ‘ ( 𝐴 + ( i · 𝐵 ) ) ) · ( ℜ ‘ ( 𝐶 + ( i · 𝐷 ) ) ) ) = ( 𝐵 · 𝐶 ) ) |
| 29 | 27 28 | oveq12d | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ ) ) → ( ( ( ℜ ‘ ( 𝐴 + ( i · 𝐵 ) ) ) · ( ℑ ‘ ( 𝐶 + ( i · 𝐷 ) ) ) ) + ( ( ℑ ‘ ( 𝐴 + ( i · 𝐵 ) ) ) · ( ℜ ‘ ( 𝐶 + ( i · 𝐷 ) ) ) ) ) = ( ( 𝐴 · 𝐷 ) + ( 𝐵 · 𝐶 ) ) ) |
| 30 | 26 29 | eqtrd | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ ) ) → ( ℑ ‘ ( ( 𝐴 + ( i · 𝐵 ) ) · ( 𝐶 + ( i · 𝐷 ) ) ) ) = ( ( 𝐴 · 𝐷 ) + ( 𝐵 · 𝐶 ) ) ) |
| 31 | 30 | oveq2d | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ ) ) → ( i · ( ℑ ‘ ( ( 𝐴 + ( i · 𝐵 ) ) · ( 𝐶 + ( i · 𝐷 ) ) ) ) ) = ( i · ( ( 𝐴 · 𝐷 ) + ( 𝐵 · 𝐶 ) ) ) ) |
| 32 | 25 31 | oveq12d | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ ) ) → ( ( ℜ ‘ ( ( 𝐴 + ( i · 𝐵 ) ) · ( 𝐶 + ( i · 𝐷 ) ) ) ) + ( i · ( ℑ ‘ ( ( 𝐴 + ( i · 𝐵 ) ) · ( 𝐶 + ( i · 𝐷 ) ) ) ) ) ) = ( ( ( 𝐴 · 𝐶 ) − ( 𝐵 · 𝐷 ) ) + ( i · ( ( 𝐴 · 𝐷 ) + ( 𝐵 · 𝐶 ) ) ) ) ) |
| 33 | 16 32 | eqtrd | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ ) ) → ( ( 𝐴 + ( i · 𝐵 ) ) · ( 𝐶 + ( i · 𝐷 ) ) ) = ( ( ( 𝐴 · 𝐶 ) − ( 𝐵 · 𝐷 ) ) + ( i · ( ( 𝐴 · 𝐷 ) + ( 𝐵 · 𝐶 ) ) ) ) ) |
| 34 | 33 | fveq2d | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ ) ) → ( abs ‘ ( ( 𝐴 + ( i · 𝐵 ) ) · ( 𝐶 + ( i · 𝐷 ) ) ) ) = ( abs ‘ ( ( ( 𝐴 · 𝐶 ) − ( 𝐵 · 𝐷 ) ) + ( i · ( ( 𝐴 · 𝐷 ) + ( 𝐵 · 𝐶 ) ) ) ) ) ) |
| 35 | 34 | oveq1d | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ ) ) → ( ( abs ‘ ( ( 𝐴 + ( i · 𝐵 ) ) · ( 𝐶 + ( i · 𝐷 ) ) ) ) ↑ 2 ) = ( ( abs ‘ ( ( ( 𝐴 · 𝐶 ) − ( 𝐵 · 𝐷 ) ) + ( i · ( ( 𝐴 · 𝐷 ) + ( 𝐵 · 𝐶 ) ) ) ) ) ↑ 2 ) ) |
| 36 | 8 14 | absmuld | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ ) ) → ( abs ‘ ( ( 𝐴 + ( i · 𝐵 ) ) · ( 𝐶 + ( i · 𝐷 ) ) ) ) = ( ( abs ‘ ( 𝐴 + ( i · 𝐵 ) ) ) · ( abs ‘ ( 𝐶 + ( i · 𝐷 ) ) ) ) ) |
| 37 | 36 | oveq1d | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ ) ) → ( ( abs ‘ ( ( 𝐴 + ( i · 𝐵 ) ) · ( 𝐶 + ( i · 𝐷 ) ) ) ) ↑ 2 ) = ( ( ( abs ‘ ( 𝐴 + ( i · 𝐵 ) ) ) · ( abs ‘ ( 𝐶 + ( i · 𝐷 ) ) ) ) ↑ 2 ) ) |
| 38 | 8 | abscld | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ ) ) → ( abs ‘ ( 𝐴 + ( i · 𝐵 ) ) ) ∈ ℝ ) |
| 39 | 38 | recnd | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ ) ) → ( abs ‘ ( 𝐴 + ( i · 𝐵 ) ) ) ∈ ℂ ) |
| 40 | 14 | abscld | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ ) ) → ( abs ‘ ( 𝐶 + ( i · 𝐷 ) ) ) ∈ ℝ ) |
| 41 | 40 | recnd | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ ) ) → ( abs ‘ ( 𝐶 + ( i · 𝐷 ) ) ) ∈ ℂ ) |
| 42 | 39 41 | sqmuld | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ ) ) → ( ( ( abs ‘ ( 𝐴 + ( i · 𝐵 ) ) ) · ( abs ‘ ( 𝐶 + ( i · 𝐷 ) ) ) ) ↑ 2 ) = ( ( ( abs ‘ ( 𝐴 + ( i · 𝐵 ) ) ) ↑ 2 ) · ( ( abs ‘ ( 𝐶 + ( i · 𝐷 ) ) ) ↑ 2 ) ) ) |
| 43 | absreimsq | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( ( abs ‘ ( 𝐴 + ( i · 𝐵 ) ) ) ↑ 2 ) = ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) ) | |
| 44 | absreimsq | ⊢ ( ( 𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ ) → ( ( abs ‘ ( 𝐶 + ( i · 𝐷 ) ) ) ↑ 2 ) = ( ( 𝐶 ↑ 2 ) + ( 𝐷 ↑ 2 ) ) ) | |
| 45 | 43 44 | oveqan12d | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ ) ) → ( ( ( abs ‘ ( 𝐴 + ( i · 𝐵 ) ) ) ↑ 2 ) · ( ( abs ‘ ( 𝐶 + ( i · 𝐷 ) ) ) ↑ 2 ) ) = ( ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) · ( ( 𝐶 ↑ 2 ) + ( 𝐷 ↑ 2 ) ) ) ) |
| 46 | 37 42 45 | 3eqtrd | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ ) ) → ( ( abs ‘ ( ( 𝐴 + ( i · 𝐵 ) ) · ( 𝐶 + ( i · 𝐷 ) ) ) ) ↑ 2 ) = ( ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) · ( ( 𝐶 ↑ 2 ) + ( 𝐷 ↑ 2 ) ) ) ) |
| 47 | 1 9 | remulcld | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ ) ) → ( 𝐴 · 𝐶 ) ∈ ℝ ) |
| 48 | 5 11 | remulcld | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ ) ) → ( 𝐵 · 𝐷 ) ∈ ℝ ) |
| 49 | 47 48 | resubcld | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ ) ) → ( ( 𝐴 · 𝐶 ) − ( 𝐵 · 𝐷 ) ) ∈ ℝ ) |
| 50 | 1 11 | remulcld | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ ) ) → ( 𝐴 · 𝐷 ) ∈ ℝ ) |
| 51 | 5 9 | remulcld | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ ) ) → ( 𝐵 · 𝐶 ) ∈ ℝ ) |
| 52 | 50 51 | readdcld | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ ) ) → ( ( 𝐴 · 𝐷 ) + ( 𝐵 · 𝐶 ) ) ∈ ℝ ) |
| 53 | absreimsq | ⊢ ( ( ( ( 𝐴 · 𝐶 ) − ( 𝐵 · 𝐷 ) ) ∈ ℝ ∧ ( ( 𝐴 · 𝐷 ) + ( 𝐵 · 𝐶 ) ) ∈ ℝ ) → ( ( abs ‘ ( ( ( 𝐴 · 𝐶 ) − ( 𝐵 · 𝐷 ) ) + ( i · ( ( 𝐴 · 𝐷 ) + ( 𝐵 · 𝐶 ) ) ) ) ) ↑ 2 ) = ( ( ( ( 𝐴 · 𝐶 ) − ( 𝐵 · 𝐷 ) ) ↑ 2 ) + ( ( ( 𝐴 · 𝐷 ) + ( 𝐵 · 𝐶 ) ) ↑ 2 ) ) ) | |
| 54 | 49 52 53 | syl2anc | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ ) ) → ( ( abs ‘ ( ( ( 𝐴 · 𝐶 ) − ( 𝐵 · 𝐷 ) ) + ( i · ( ( 𝐴 · 𝐷 ) + ( 𝐵 · 𝐶 ) ) ) ) ) ↑ 2 ) = ( ( ( ( 𝐴 · 𝐶 ) − ( 𝐵 · 𝐷 ) ) ↑ 2 ) + ( ( ( 𝐴 · 𝐷 ) + ( 𝐵 · 𝐶 ) ) ↑ 2 ) ) ) |
| 55 | 35 46 54 | 3eqtr3d | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ ) ) → ( ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) · ( ( 𝐶 ↑ 2 ) + ( 𝐷 ↑ 2 ) ) ) = ( ( ( ( 𝐴 · 𝐶 ) − ( 𝐵 · 𝐷 ) ) ↑ 2 ) + ( ( ( 𝐴 · 𝐷 ) + ( 𝐵 · 𝐶 ) ) ↑ 2 ) ) ) |