This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The Brahmagupta-Fibonacci identity. Express the product of two sums of two squares as a sum of two squares. Second result. (Contributed by Thierry Arnoux, 1-Feb-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | bhmafibid2 | |- ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR ) ) -> ( ( ( A ^ 2 ) + ( B ^ 2 ) ) x. ( ( C ^ 2 ) + ( D ^ 2 ) ) ) = ( ( ( ( A x. C ) + ( B x. D ) ) ^ 2 ) + ( ( ( A x. D ) - ( B x. C ) ) ^ 2 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simprl | |- ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR ) ) -> C e. RR ) |
|
| 2 | 1 | recnd | |- ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR ) ) -> C e. CC ) |
| 3 | 2 | sqcld | |- ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR ) ) -> ( C ^ 2 ) e. CC ) |
| 4 | simprr | |- ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR ) ) -> D e. RR ) |
|
| 5 | 4 | recnd | |- ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR ) ) -> D e. CC ) |
| 6 | 5 | sqcld | |- ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR ) ) -> ( D ^ 2 ) e. CC ) |
| 7 | 3 6 | addcomd | |- ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR ) ) -> ( ( C ^ 2 ) + ( D ^ 2 ) ) = ( ( D ^ 2 ) + ( C ^ 2 ) ) ) |
| 8 | 7 | oveq2d | |- ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR ) ) -> ( ( ( A ^ 2 ) + ( B ^ 2 ) ) x. ( ( C ^ 2 ) + ( D ^ 2 ) ) ) = ( ( ( A ^ 2 ) + ( B ^ 2 ) ) x. ( ( D ^ 2 ) + ( C ^ 2 ) ) ) ) |
| 9 | bhmafibid1 | |- ( ( ( A e. RR /\ B e. RR ) /\ ( D e. RR /\ C e. RR ) ) -> ( ( ( A ^ 2 ) + ( B ^ 2 ) ) x. ( ( D ^ 2 ) + ( C ^ 2 ) ) ) = ( ( ( ( A x. D ) - ( B x. C ) ) ^ 2 ) + ( ( ( A x. C ) + ( B x. D ) ) ^ 2 ) ) ) |
|
| 10 | 9 | ancom2s | |- ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR ) ) -> ( ( ( A ^ 2 ) + ( B ^ 2 ) ) x. ( ( D ^ 2 ) + ( C ^ 2 ) ) ) = ( ( ( ( A x. D ) - ( B x. C ) ) ^ 2 ) + ( ( ( A x. C ) + ( B x. D ) ) ^ 2 ) ) ) |
| 11 | simpll | |- ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR ) ) -> A e. RR ) |
|
| 12 | 11 | recnd | |- ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR ) ) -> A e. CC ) |
| 13 | 12 5 | mulcld | |- ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR ) ) -> ( A x. D ) e. CC ) |
| 14 | simplr | |- ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR ) ) -> B e. RR ) |
|
| 15 | 14 | recnd | |- ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR ) ) -> B e. CC ) |
| 16 | 15 2 | mulcld | |- ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR ) ) -> ( B x. C ) e. CC ) |
| 17 | 13 16 | subcld | |- ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR ) ) -> ( ( A x. D ) - ( B x. C ) ) e. CC ) |
| 18 | 17 | sqcld | |- ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR ) ) -> ( ( ( A x. D ) - ( B x. C ) ) ^ 2 ) e. CC ) |
| 19 | 12 2 | mulcld | |- ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR ) ) -> ( A x. C ) e. CC ) |
| 20 | 15 5 | mulcld | |- ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR ) ) -> ( B x. D ) e. CC ) |
| 21 | 19 20 | addcld | |- ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR ) ) -> ( ( A x. C ) + ( B x. D ) ) e. CC ) |
| 22 | 21 | sqcld | |- ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR ) ) -> ( ( ( A x. C ) + ( B x. D ) ) ^ 2 ) e. CC ) |
| 23 | 18 22 | addcomd | |- ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR ) ) -> ( ( ( ( A x. D ) - ( B x. C ) ) ^ 2 ) + ( ( ( A x. C ) + ( B x. D ) ) ^ 2 ) ) = ( ( ( ( A x. C ) + ( B x. D ) ) ^ 2 ) + ( ( ( A x. D ) - ( B x. C ) ) ^ 2 ) ) ) |
| 24 | 8 10 23 | 3eqtrd | |- ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR ) ) -> ( ( ( A ^ 2 ) + ( B ^ 2 ) ) x. ( ( C ^ 2 ) + ( D ^ 2 ) ) ) = ( ( ( ( A x. C ) + ( B x. D ) ) ^ 2 ) + ( ( ( A x. D ) - ( B x. C ) ) ^ 2 ) ) ) |