This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Baire's Category Theorem. If a nonempty metric space is complete, it is nonmeager in itself. In other words, no open set in the metric space can be the countable union of rare closed subsets (where rare means having a closure with empty interior), so some subset Mk must have a nonempty interior. Theorem 4.7-2 of Kreyszig p. 247. (The terminology "meager" and "nonmeager" is used by Kreyszig to replace Baire's "of the first category" and "of the second category." The latter terms are going out of favor to avoid confusion with category theory.) See bcthlem5 for an overview of the proof. (Contributed by NM, 28-Oct-2007) (Proof shortened by Mario Carneiro, 6-Jan-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | bcth.2 | |- J = ( MetOpen ` D ) |
|
| Assertion | bcth | |- ( ( D e. ( CMet ` X ) /\ M : NN --> ( Clsd ` J ) /\ ( ( int ` J ) ` U. ran M ) =/= (/) ) -> E. k e. NN ( ( int ` J ) ` ( M ` k ) ) =/= (/) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bcth.2 | |- J = ( MetOpen ` D ) |
|
| 2 | simpll | |- ( ( ( D e. ( CMet ` X ) /\ M : NN --> ( Clsd ` J ) ) /\ A. k e. NN ( ( int ` J ) ` ( M ` k ) ) = (/) ) -> D e. ( CMet ` X ) ) |
|
| 3 | eleq1w | |- ( x = y -> ( x e. X <-> y e. X ) ) |
|
| 4 | eleq1w | |- ( r = m -> ( r e. RR+ <-> m e. RR+ ) ) |
|
| 5 | 3 4 | bi2anan9 | |- ( ( x = y /\ r = m ) -> ( ( x e. X /\ r e. RR+ ) <-> ( y e. X /\ m e. RR+ ) ) ) |
| 6 | simpr | |- ( ( x = y /\ r = m ) -> r = m ) |
|
| 7 | 6 | breq1d | |- ( ( x = y /\ r = m ) -> ( r < ( 1 / k ) <-> m < ( 1 / k ) ) ) |
| 8 | oveq12 | |- ( ( x = y /\ r = m ) -> ( x ( ball ` D ) r ) = ( y ( ball ` D ) m ) ) |
|
| 9 | 8 | fveq2d | |- ( ( x = y /\ r = m ) -> ( ( cls ` J ) ` ( x ( ball ` D ) r ) ) = ( ( cls ` J ) ` ( y ( ball ` D ) m ) ) ) |
| 10 | 9 | sseq1d | |- ( ( x = y /\ r = m ) -> ( ( ( cls ` J ) ` ( x ( ball ` D ) r ) ) C_ ( ( ( ball ` D ) ` z ) \ ( M ` k ) ) <-> ( ( cls ` J ) ` ( y ( ball ` D ) m ) ) C_ ( ( ( ball ` D ) ` z ) \ ( M ` k ) ) ) ) |
| 11 | 7 10 | anbi12d | |- ( ( x = y /\ r = m ) -> ( ( r < ( 1 / k ) /\ ( ( cls ` J ) ` ( x ( ball ` D ) r ) ) C_ ( ( ( ball ` D ) ` z ) \ ( M ` k ) ) ) <-> ( m < ( 1 / k ) /\ ( ( cls ` J ) ` ( y ( ball ` D ) m ) ) C_ ( ( ( ball ` D ) ` z ) \ ( M ` k ) ) ) ) ) |
| 12 | 5 11 | anbi12d | |- ( ( x = y /\ r = m ) -> ( ( ( x e. X /\ r e. RR+ ) /\ ( r < ( 1 / k ) /\ ( ( cls ` J ) ` ( x ( ball ` D ) r ) ) C_ ( ( ( ball ` D ) ` z ) \ ( M ` k ) ) ) ) <-> ( ( y e. X /\ m e. RR+ ) /\ ( m < ( 1 / k ) /\ ( ( cls ` J ) ` ( y ( ball ` D ) m ) ) C_ ( ( ( ball ` D ) ` z ) \ ( M ` k ) ) ) ) ) ) |
| 13 | 12 | cbvopabv | |- { <. x , r >. | ( ( x e. X /\ r e. RR+ ) /\ ( r < ( 1 / k ) /\ ( ( cls ` J ) ` ( x ( ball ` D ) r ) ) C_ ( ( ( ball ` D ) ` z ) \ ( M ` k ) ) ) ) } = { <. y , m >. | ( ( y e. X /\ m e. RR+ ) /\ ( m < ( 1 / k ) /\ ( ( cls ` J ) ` ( y ( ball ` D ) m ) ) C_ ( ( ( ball ` D ) ` z ) \ ( M ` k ) ) ) ) } |
| 14 | oveq2 | |- ( k = n -> ( 1 / k ) = ( 1 / n ) ) |
|
| 15 | 14 | breq2d | |- ( k = n -> ( m < ( 1 / k ) <-> m < ( 1 / n ) ) ) |
| 16 | fveq2 | |- ( k = n -> ( M ` k ) = ( M ` n ) ) |
|
| 17 | 16 | difeq2d | |- ( k = n -> ( ( ( ball ` D ) ` z ) \ ( M ` k ) ) = ( ( ( ball ` D ) ` z ) \ ( M ` n ) ) ) |
| 18 | 17 | sseq2d | |- ( k = n -> ( ( ( cls ` J ) ` ( y ( ball ` D ) m ) ) C_ ( ( ( ball ` D ) ` z ) \ ( M ` k ) ) <-> ( ( cls ` J ) ` ( y ( ball ` D ) m ) ) C_ ( ( ( ball ` D ) ` z ) \ ( M ` n ) ) ) ) |
| 19 | 15 18 | anbi12d | |- ( k = n -> ( ( m < ( 1 / k ) /\ ( ( cls ` J ) ` ( y ( ball ` D ) m ) ) C_ ( ( ( ball ` D ) ` z ) \ ( M ` k ) ) ) <-> ( m < ( 1 / n ) /\ ( ( cls ` J ) ` ( y ( ball ` D ) m ) ) C_ ( ( ( ball ` D ) ` z ) \ ( M ` n ) ) ) ) ) |
| 20 | 19 | anbi2d | |- ( k = n -> ( ( ( y e. X /\ m e. RR+ ) /\ ( m < ( 1 / k ) /\ ( ( cls ` J ) ` ( y ( ball ` D ) m ) ) C_ ( ( ( ball ` D ) ` z ) \ ( M ` k ) ) ) ) <-> ( ( y e. X /\ m e. RR+ ) /\ ( m < ( 1 / n ) /\ ( ( cls ` J ) ` ( y ( ball ` D ) m ) ) C_ ( ( ( ball ` D ) ` z ) \ ( M ` n ) ) ) ) ) ) |
| 21 | 20 | opabbidv | |- ( k = n -> { <. y , m >. | ( ( y e. X /\ m e. RR+ ) /\ ( m < ( 1 / k ) /\ ( ( cls ` J ) ` ( y ( ball ` D ) m ) ) C_ ( ( ( ball ` D ) ` z ) \ ( M ` k ) ) ) ) } = { <. y , m >. | ( ( y e. X /\ m e. RR+ ) /\ ( m < ( 1 / n ) /\ ( ( cls ` J ) ` ( y ( ball ` D ) m ) ) C_ ( ( ( ball ` D ) ` z ) \ ( M ` n ) ) ) ) } ) |
| 22 | 13 21 | eqtrid | |- ( k = n -> { <. x , r >. | ( ( x e. X /\ r e. RR+ ) /\ ( r < ( 1 / k ) /\ ( ( cls ` J ) ` ( x ( ball ` D ) r ) ) C_ ( ( ( ball ` D ) ` z ) \ ( M ` k ) ) ) ) } = { <. y , m >. | ( ( y e. X /\ m e. RR+ ) /\ ( m < ( 1 / n ) /\ ( ( cls ` J ) ` ( y ( ball ` D ) m ) ) C_ ( ( ( ball ` D ) ` z ) \ ( M ` n ) ) ) ) } ) |
| 23 | fveq2 | |- ( z = g -> ( ( ball ` D ) ` z ) = ( ( ball ` D ) ` g ) ) |
|
| 24 | 23 | difeq1d | |- ( z = g -> ( ( ( ball ` D ) ` z ) \ ( M ` n ) ) = ( ( ( ball ` D ) ` g ) \ ( M ` n ) ) ) |
| 25 | 24 | sseq2d | |- ( z = g -> ( ( ( cls ` J ) ` ( y ( ball ` D ) m ) ) C_ ( ( ( ball ` D ) ` z ) \ ( M ` n ) ) <-> ( ( cls ` J ) ` ( y ( ball ` D ) m ) ) C_ ( ( ( ball ` D ) ` g ) \ ( M ` n ) ) ) ) |
| 26 | 25 | anbi2d | |- ( z = g -> ( ( m < ( 1 / n ) /\ ( ( cls ` J ) ` ( y ( ball ` D ) m ) ) C_ ( ( ( ball ` D ) ` z ) \ ( M ` n ) ) ) <-> ( m < ( 1 / n ) /\ ( ( cls ` J ) ` ( y ( ball ` D ) m ) ) C_ ( ( ( ball ` D ) ` g ) \ ( M ` n ) ) ) ) ) |
| 27 | 26 | anbi2d | |- ( z = g -> ( ( ( y e. X /\ m e. RR+ ) /\ ( m < ( 1 / n ) /\ ( ( cls ` J ) ` ( y ( ball ` D ) m ) ) C_ ( ( ( ball ` D ) ` z ) \ ( M ` n ) ) ) ) <-> ( ( y e. X /\ m e. RR+ ) /\ ( m < ( 1 / n ) /\ ( ( cls ` J ) ` ( y ( ball ` D ) m ) ) C_ ( ( ( ball ` D ) ` g ) \ ( M ` n ) ) ) ) ) ) |
| 28 | 27 | opabbidv | |- ( z = g -> { <. y , m >. | ( ( y e. X /\ m e. RR+ ) /\ ( m < ( 1 / n ) /\ ( ( cls ` J ) ` ( y ( ball ` D ) m ) ) C_ ( ( ( ball ` D ) ` z ) \ ( M ` n ) ) ) ) } = { <. y , m >. | ( ( y e. X /\ m e. RR+ ) /\ ( m < ( 1 / n ) /\ ( ( cls ` J ) ` ( y ( ball ` D ) m ) ) C_ ( ( ( ball ` D ) ` g ) \ ( M ` n ) ) ) ) } ) |
| 29 | 22 28 | cbvmpov | |- ( k e. NN , z e. ( X X. RR+ ) |-> { <. x , r >. | ( ( x e. X /\ r e. RR+ ) /\ ( r < ( 1 / k ) /\ ( ( cls ` J ) ` ( x ( ball ` D ) r ) ) C_ ( ( ( ball ` D ) ` z ) \ ( M ` k ) ) ) ) } ) = ( n e. NN , g e. ( X X. RR+ ) |-> { <. y , m >. | ( ( y e. X /\ m e. RR+ ) /\ ( m < ( 1 / n ) /\ ( ( cls ` J ) ` ( y ( ball ` D ) m ) ) C_ ( ( ( ball ` D ) ` g ) \ ( M ` n ) ) ) ) } ) |
| 30 | simplr | |- ( ( ( D e. ( CMet ` X ) /\ M : NN --> ( Clsd ` J ) ) /\ A. k e. NN ( ( int ` J ) ` ( M ` k ) ) = (/) ) -> M : NN --> ( Clsd ` J ) ) |
|
| 31 | simpr | |- ( ( ( D e. ( CMet ` X ) /\ M : NN --> ( Clsd ` J ) ) /\ A. k e. NN ( ( int ` J ) ` ( M ` k ) ) = (/) ) -> A. k e. NN ( ( int ` J ) ` ( M ` k ) ) = (/) ) |
|
| 32 | 16 | fveqeq2d | |- ( k = n -> ( ( ( int ` J ) ` ( M ` k ) ) = (/) <-> ( ( int ` J ) ` ( M ` n ) ) = (/) ) ) |
| 33 | 32 | cbvralvw | |- ( A. k e. NN ( ( int ` J ) ` ( M ` k ) ) = (/) <-> A. n e. NN ( ( int ` J ) ` ( M ` n ) ) = (/) ) |
| 34 | 31 33 | sylib | |- ( ( ( D e. ( CMet ` X ) /\ M : NN --> ( Clsd ` J ) ) /\ A. k e. NN ( ( int ` J ) ` ( M ` k ) ) = (/) ) -> A. n e. NN ( ( int ` J ) ` ( M ` n ) ) = (/) ) |
| 35 | 1 2 29 30 34 | bcthlem5 | |- ( ( ( D e. ( CMet ` X ) /\ M : NN --> ( Clsd ` J ) ) /\ A. k e. NN ( ( int ` J ) ` ( M ` k ) ) = (/) ) -> ( ( int ` J ) ` U. ran M ) = (/) ) |
| 36 | 35 | ex | |- ( ( D e. ( CMet ` X ) /\ M : NN --> ( Clsd ` J ) ) -> ( A. k e. NN ( ( int ` J ) ` ( M ` k ) ) = (/) -> ( ( int ` J ) ` U. ran M ) = (/) ) ) |
| 37 | 36 | necon3ad | |- ( ( D e. ( CMet ` X ) /\ M : NN --> ( Clsd ` J ) ) -> ( ( ( int ` J ) ` U. ran M ) =/= (/) -> -. A. k e. NN ( ( int ` J ) ` ( M ` k ) ) = (/) ) ) |
| 38 | 37 | 3impia | |- ( ( D e. ( CMet ` X ) /\ M : NN --> ( Clsd ` J ) /\ ( ( int ` J ) ` U. ran M ) =/= (/) ) -> -. A. k e. NN ( ( int ` J ) ` ( M ` k ) ) = (/) ) |
| 39 | df-ne | |- ( ( ( int ` J ) ` ( M ` k ) ) =/= (/) <-> -. ( ( int ` J ) ` ( M ` k ) ) = (/) ) |
|
| 40 | 39 | rexbii | |- ( E. k e. NN ( ( int ` J ) ` ( M ` k ) ) =/= (/) <-> E. k e. NN -. ( ( int ` J ) ` ( M ` k ) ) = (/) ) |
| 41 | rexnal | |- ( E. k e. NN -. ( ( int ` J ) ` ( M ` k ) ) = (/) <-> -. A. k e. NN ( ( int ` J ) ` ( M ` k ) ) = (/) ) |
|
| 42 | 40 41 | bitri | |- ( E. k e. NN ( ( int ` J ) ` ( M ` k ) ) =/= (/) <-> -. A. k e. NN ( ( int ` J ) ` ( M ` k ) ) = (/) ) |
| 43 | 38 42 | sylibr | |- ( ( D e. ( CMet ` X ) /\ M : NN --> ( Clsd ` J ) /\ ( ( int ` J ) ` U. ran M ) =/= (/) ) -> E. k e. NN ( ( int ` J ) ` ( M ` k ) ) =/= (/) ) |