This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Baire's Category Theorem, version 2: If countably many closed sets cover X , then one of them has an interior. (Contributed by Mario Carneiro, 10-Jan-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | bcth.2 | |- J = ( MetOpen ` D ) |
|
| Assertion | bcth2 | |- ( ( ( D e. ( CMet ` X ) /\ X =/= (/) ) /\ ( M : NN --> ( Clsd ` J ) /\ U. ran M = X ) ) -> E. k e. NN ( ( int ` J ) ` ( M ` k ) ) =/= (/) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bcth.2 | |- J = ( MetOpen ` D ) |
|
| 2 | simpll | |- ( ( ( D e. ( CMet ` X ) /\ X =/= (/) ) /\ ( M : NN --> ( Clsd ` J ) /\ U. ran M = X ) ) -> D e. ( CMet ` X ) ) |
|
| 3 | simprl | |- ( ( ( D e. ( CMet ` X ) /\ X =/= (/) ) /\ ( M : NN --> ( Clsd ` J ) /\ U. ran M = X ) ) -> M : NN --> ( Clsd ` J ) ) |
|
| 4 | cmetmet | |- ( D e. ( CMet ` X ) -> D e. ( Met ` X ) ) |
|
| 5 | 4 | ad2antrr | |- ( ( ( D e. ( CMet ` X ) /\ X =/= (/) ) /\ ( M : NN --> ( Clsd ` J ) /\ U. ran M = X ) ) -> D e. ( Met ` X ) ) |
| 6 | metxmet | |- ( D e. ( Met ` X ) -> D e. ( *Met ` X ) ) |
|
| 7 | 1 | mopntopon | |- ( D e. ( *Met ` X ) -> J e. ( TopOn ` X ) ) |
| 8 | 5 6 7 | 3syl | |- ( ( ( D e. ( CMet ` X ) /\ X =/= (/) ) /\ ( M : NN --> ( Clsd ` J ) /\ U. ran M = X ) ) -> J e. ( TopOn ` X ) ) |
| 9 | topontop | |- ( J e. ( TopOn ` X ) -> J e. Top ) |
|
| 10 | 8 9 | syl | |- ( ( ( D e. ( CMet ` X ) /\ X =/= (/) ) /\ ( M : NN --> ( Clsd ` J ) /\ U. ran M = X ) ) -> J e. Top ) |
| 11 | simprr | |- ( ( ( D e. ( CMet ` X ) /\ X =/= (/) ) /\ ( M : NN --> ( Clsd ` J ) /\ U. ran M = X ) ) -> U. ran M = X ) |
|
| 12 | toponmax | |- ( J e. ( TopOn ` X ) -> X e. J ) |
|
| 13 | 8 12 | syl | |- ( ( ( D e. ( CMet ` X ) /\ X =/= (/) ) /\ ( M : NN --> ( Clsd ` J ) /\ U. ran M = X ) ) -> X e. J ) |
| 14 | 11 13 | eqeltrd | |- ( ( ( D e. ( CMet ` X ) /\ X =/= (/) ) /\ ( M : NN --> ( Clsd ` J ) /\ U. ran M = X ) ) -> U. ran M e. J ) |
| 15 | isopn3i | |- ( ( J e. Top /\ U. ran M e. J ) -> ( ( int ` J ) ` U. ran M ) = U. ran M ) |
|
| 16 | 10 14 15 | syl2anc | |- ( ( ( D e. ( CMet ` X ) /\ X =/= (/) ) /\ ( M : NN --> ( Clsd ` J ) /\ U. ran M = X ) ) -> ( ( int ` J ) ` U. ran M ) = U. ran M ) |
| 17 | 16 11 | eqtrd | |- ( ( ( D e. ( CMet ` X ) /\ X =/= (/) ) /\ ( M : NN --> ( Clsd ` J ) /\ U. ran M = X ) ) -> ( ( int ` J ) ` U. ran M ) = X ) |
| 18 | simplr | |- ( ( ( D e. ( CMet ` X ) /\ X =/= (/) ) /\ ( M : NN --> ( Clsd ` J ) /\ U. ran M = X ) ) -> X =/= (/) ) |
|
| 19 | 17 18 | eqnetrd | |- ( ( ( D e. ( CMet ` X ) /\ X =/= (/) ) /\ ( M : NN --> ( Clsd ` J ) /\ U. ran M = X ) ) -> ( ( int ` J ) ` U. ran M ) =/= (/) ) |
| 20 | 1 | bcth | |- ( ( D e. ( CMet ` X ) /\ M : NN --> ( Clsd ` J ) /\ ( ( int ` J ) ` U. ran M ) =/= (/) ) -> E. k e. NN ( ( int ` J ) ` ( M ` k ) ) =/= (/) ) |
| 21 | 2 3 19 20 | syl3anc | |- ( ( ( D e. ( CMet ` X ) /\ X =/= (/) ) /\ ( M : NN --> ( Clsd ` J ) /\ U. ran M = X ) ) -> E. k e. NN ( ( int ` J ) ` ( M ` k ) ) =/= (/) ) |