This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If at least two sets exist ( dtru ), then the same is true expressed in an alternate form similar to the form of ax6e . ax6e2nd is derived from ax6e2ndVD . (Contributed by Alan Sare, 25-Mar-2014) (Proof modification is discouraged.) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ax6e2nd | ⊢ ( ¬ ∀ 𝑥 𝑥 = 𝑦 → ∃ 𝑥 ∃ 𝑦 ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑣 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vex | ⊢ 𝑢 ∈ V | |
| 2 | ax6e | ⊢ ∃ 𝑦 𝑦 = 𝑣 | |
| 3 | 1 2 | pm3.2i | ⊢ ( 𝑢 ∈ V ∧ ∃ 𝑦 𝑦 = 𝑣 ) |
| 4 | 19.42v | ⊢ ( ∃ 𝑦 ( 𝑢 ∈ V ∧ 𝑦 = 𝑣 ) ↔ ( 𝑢 ∈ V ∧ ∃ 𝑦 𝑦 = 𝑣 ) ) | |
| 5 | 4 | biimpri | ⊢ ( ( 𝑢 ∈ V ∧ ∃ 𝑦 𝑦 = 𝑣 ) → ∃ 𝑦 ( 𝑢 ∈ V ∧ 𝑦 = 𝑣 ) ) |
| 6 | 3 5 | ax-mp | ⊢ ∃ 𝑦 ( 𝑢 ∈ V ∧ 𝑦 = 𝑣 ) |
| 7 | isset | ⊢ ( 𝑢 ∈ V ↔ ∃ 𝑥 𝑥 = 𝑢 ) | |
| 8 | 7 | anbi1i | ⊢ ( ( 𝑢 ∈ V ∧ 𝑦 = 𝑣 ) ↔ ( ∃ 𝑥 𝑥 = 𝑢 ∧ 𝑦 = 𝑣 ) ) |
| 9 | 8 | exbii | ⊢ ( ∃ 𝑦 ( 𝑢 ∈ V ∧ 𝑦 = 𝑣 ) ↔ ∃ 𝑦 ( ∃ 𝑥 𝑥 = 𝑢 ∧ 𝑦 = 𝑣 ) ) |
| 10 | 6 9 | mpbi | ⊢ ∃ 𝑦 ( ∃ 𝑥 𝑥 = 𝑢 ∧ 𝑦 = 𝑣 ) |
| 11 | id | ⊢ ( ¬ ∀ 𝑥 𝑥 = 𝑦 → ¬ ∀ 𝑥 𝑥 = 𝑦 ) | |
| 12 | hbnae | ⊢ ( ¬ ∀ 𝑥 𝑥 = 𝑦 → ∀ 𝑦 ¬ ∀ 𝑥 𝑥 = 𝑦 ) | |
| 13 | hbn1 | ⊢ ( ¬ ∀ 𝑥 𝑥 = 𝑦 → ∀ 𝑥 ¬ ∀ 𝑥 𝑥 = 𝑦 ) | |
| 14 | ax-5 | ⊢ ( 𝑧 = 𝑣 → ∀ 𝑥 𝑧 = 𝑣 ) | |
| 15 | ax-5 | ⊢ ( 𝑦 = 𝑣 → ∀ 𝑧 𝑦 = 𝑣 ) | |
| 16 | id | ⊢ ( 𝑧 = 𝑦 → 𝑧 = 𝑦 ) | |
| 17 | equequ1 | ⊢ ( 𝑧 = 𝑦 → ( 𝑧 = 𝑣 ↔ 𝑦 = 𝑣 ) ) | |
| 18 | 16 17 | syl | ⊢ ( 𝑧 = 𝑦 → ( 𝑧 = 𝑣 ↔ 𝑦 = 𝑣 ) ) |
| 19 | 18 | idiALT | ⊢ ( 𝑧 = 𝑦 → ( 𝑧 = 𝑣 ↔ 𝑦 = 𝑣 ) ) |
| 20 | 14 15 19 | dvelimh | ⊢ ( ¬ ∀ 𝑥 𝑥 = 𝑦 → ( 𝑦 = 𝑣 → ∀ 𝑥 𝑦 = 𝑣 ) ) |
| 21 | 11 20 | syl | ⊢ ( ¬ ∀ 𝑥 𝑥 = 𝑦 → ( 𝑦 = 𝑣 → ∀ 𝑥 𝑦 = 𝑣 ) ) |
| 22 | 21 | idiALT | ⊢ ( ¬ ∀ 𝑥 𝑥 = 𝑦 → ( 𝑦 = 𝑣 → ∀ 𝑥 𝑦 = 𝑣 ) ) |
| 23 | 22 | alimi | ⊢ ( ∀ 𝑥 ¬ ∀ 𝑥 𝑥 = 𝑦 → ∀ 𝑥 ( 𝑦 = 𝑣 → ∀ 𝑥 𝑦 = 𝑣 ) ) |
| 24 | 13 23 | syl | ⊢ ( ¬ ∀ 𝑥 𝑥 = 𝑦 → ∀ 𝑥 ( 𝑦 = 𝑣 → ∀ 𝑥 𝑦 = 𝑣 ) ) |
| 25 | 11 24 | syl | ⊢ ( ¬ ∀ 𝑥 𝑥 = 𝑦 → ∀ 𝑥 ( 𝑦 = 𝑣 → ∀ 𝑥 𝑦 = 𝑣 ) ) |
| 26 | 19.41rg | ⊢ ( ∀ 𝑥 ( 𝑦 = 𝑣 → ∀ 𝑥 𝑦 = 𝑣 ) → ( ( ∃ 𝑥 𝑥 = 𝑢 ∧ 𝑦 = 𝑣 ) → ∃ 𝑥 ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑣 ) ) ) | |
| 27 | 25 26 | syl | ⊢ ( ¬ ∀ 𝑥 𝑥 = 𝑦 → ( ( ∃ 𝑥 𝑥 = 𝑢 ∧ 𝑦 = 𝑣 ) → ∃ 𝑥 ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑣 ) ) ) |
| 28 | 27 | idiALT | ⊢ ( ¬ ∀ 𝑥 𝑥 = 𝑦 → ( ( ∃ 𝑥 𝑥 = 𝑢 ∧ 𝑦 = 𝑣 ) → ∃ 𝑥 ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑣 ) ) ) |
| 29 | 28 | alimi | ⊢ ( ∀ 𝑦 ¬ ∀ 𝑥 𝑥 = 𝑦 → ∀ 𝑦 ( ( ∃ 𝑥 𝑥 = 𝑢 ∧ 𝑦 = 𝑣 ) → ∃ 𝑥 ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑣 ) ) ) |
| 30 | 12 29 | syl | ⊢ ( ¬ ∀ 𝑥 𝑥 = 𝑦 → ∀ 𝑦 ( ( ∃ 𝑥 𝑥 = 𝑢 ∧ 𝑦 = 𝑣 ) → ∃ 𝑥 ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑣 ) ) ) |
| 31 | 11 30 | syl | ⊢ ( ¬ ∀ 𝑥 𝑥 = 𝑦 → ∀ 𝑦 ( ( ∃ 𝑥 𝑥 = 𝑢 ∧ 𝑦 = 𝑣 ) → ∃ 𝑥 ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑣 ) ) ) |
| 32 | exim | ⊢ ( ∀ 𝑦 ( ( ∃ 𝑥 𝑥 = 𝑢 ∧ 𝑦 = 𝑣 ) → ∃ 𝑥 ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑣 ) ) → ( ∃ 𝑦 ( ∃ 𝑥 𝑥 = 𝑢 ∧ 𝑦 = 𝑣 ) → ∃ 𝑦 ∃ 𝑥 ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑣 ) ) ) | |
| 33 | 31 32 | syl | ⊢ ( ¬ ∀ 𝑥 𝑥 = 𝑦 → ( ∃ 𝑦 ( ∃ 𝑥 𝑥 = 𝑢 ∧ 𝑦 = 𝑣 ) → ∃ 𝑦 ∃ 𝑥 ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑣 ) ) ) |
| 34 | pm2.27 | ⊢ ( ∃ 𝑦 ( ∃ 𝑥 𝑥 = 𝑢 ∧ 𝑦 = 𝑣 ) → ( ( ∃ 𝑦 ( ∃ 𝑥 𝑥 = 𝑢 ∧ 𝑦 = 𝑣 ) → ∃ 𝑦 ∃ 𝑥 ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑣 ) ) → ∃ 𝑦 ∃ 𝑥 ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑣 ) ) ) | |
| 35 | 10 33 34 | mpsyl | ⊢ ( ¬ ∀ 𝑥 𝑥 = 𝑦 → ∃ 𝑦 ∃ 𝑥 ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑣 ) ) |
| 36 | excomim | ⊢ ( ∃ 𝑦 ∃ 𝑥 ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑣 ) → ∃ 𝑥 ∃ 𝑦 ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑣 ) ) | |
| 37 | 35 36 | syl | ⊢ ( ¬ ∀ 𝑥 𝑥 = 𝑦 → ∃ 𝑥 ∃ 𝑦 ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑣 ) ) |
| 38 | 37 | idiALT | ⊢ ( ¬ ∀ 𝑥 𝑥 = 𝑦 → ∃ 𝑥 ∃ 𝑦 ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑣 ) ) |