This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Closed form of right-to-left implication of 19.41 , Theorem 19.41 of Margaris p. 90. Derived from 19.41rgVD . (Contributed by Alan Sare, 8-Feb-2014) (Proof modification is discouraged.) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | 19.41rg | |- ( A. x ( ps -> A. x ps ) -> ( ( E. x ph /\ ps ) -> E. x ( ph /\ ps ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sp | |- ( A. x ( ps -> A. x ps ) -> ( ps -> A. x ps ) ) |
|
| 2 | pm3.21 | |- ( ps -> ( ph -> ( ph /\ ps ) ) ) |
|
| 3 | 2 | a1i | |- ( ( ps -> A. x ps ) -> ( ps -> ( ph -> ( ph /\ ps ) ) ) ) |
| 4 | 3 | al2imi | |- ( A. x ( ps -> A. x ps ) -> ( A. x ps -> A. x ( ph -> ( ph /\ ps ) ) ) ) |
| 5 | exim | |- ( A. x ( ph -> ( ph /\ ps ) ) -> ( E. x ph -> E. x ( ph /\ ps ) ) ) |
|
| 6 | 4 5 | syl6 | |- ( A. x ( ps -> A. x ps ) -> ( A. x ps -> ( E. x ph -> E. x ( ph /\ ps ) ) ) ) |
| 7 | 1 6 | syld | |- ( A. x ( ps -> A. x ps ) -> ( ps -> ( E. x ph -> E. x ( ph /\ ps ) ) ) ) |
| 8 | 7 | com23 | |- ( A. x ( ps -> A. x ps ) -> ( E. x ph -> ( ps -> E. x ( ph /\ ps ) ) ) ) |
| 9 | 8 | impd | |- ( A. x ( ps -> A. x ps ) -> ( ( E. x ph /\ ps ) -> E. x ( ph /\ ps ) ) ) |