This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The average of two numbers is less than or equal to at least one of them. (Contributed by NM, 9-Dec-2005) (Revised by Mario Carneiro, 28-May-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | avgle | |- ( ( A e. RR /\ B e. RR ) -> ( ( ( A + B ) / 2 ) <_ A \/ ( ( A + B ) / 2 ) <_ B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | letric | |- ( ( A e. RR /\ B e. RR ) -> ( A <_ B \/ B <_ A ) ) |
|
| 2 | 1 | orcomd | |- ( ( A e. RR /\ B e. RR ) -> ( B <_ A \/ A <_ B ) ) |
| 3 | avgle2 | |- ( ( B e. RR /\ A e. RR ) -> ( B <_ A <-> ( ( B + A ) / 2 ) <_ A ) ) |
|
| 4 | 3 | ancoms | |- ( ( A e. RR /\ B e. RR ) -> ( B <_ A <-> ( ( B + A ) / 2 ) <_ A ) ) |
| 5 | recn | |- ( A e. RR -> A e. CC ) |
|
| 6 | recn | |- ( B e. RR -> B e. CC ) |
|
| 7 | addcom | |- ( ( A e. CC /\ B e. CC ) -> ( A + B ) = ( B + A ) ) |
|
| 8 | 5 6 7 | syl2an | |- ( ( A e. RR /\ B e. RR ) -> ( A + B ) = ( B + A ) ) |
| 9 | 8 | oveq1d | |- ( ( A e. RR /\ B e. RR ) -> ( ( A + B ) / 2 ) = ( ( B + A ) / 2 ) ) |
| 10 | 9 | breq1d | |- ( ( A e. RR /\ B e. RR ) -> ( ( ( A + B ) / 2 ) <_ A <-> ( ( B + A ) / 2 ) <_ A ) ) |
| 11 | 4 10 | bitr4d | |- ( ( A e. RR /\ B e. RR ) -> ( B <_ A <-> ( ( A + B ) / 2 ) <_ A ) ) |
| 12 | avgle2 | |- ( ( A e. RR /\ B e. RR ) -> ( A <_ B <-> ( ( A + B ) / 2 ) <_ B ) ) |
|
| 13 | 11 12 | orbi12d | |- ( ( A e. RR /\ B e. RR ) -> ( ( B <_ A \/ A <_ B ) <-> ( ( ( A + B ) / 2 ) <_ A \/ ( ( A + B ) / 2 ) <_ B ) ) ) |
| 14 | 2 13 | mpbid | |- ( ( A e. RR /\ B e. RR ) -> ( ( ( A + B ) / 2 ) <_ A \/ ( ( A + B ) / 2 ) <_ B ) ) |