This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A Hilbert lattice is atomic, i.e. any nonzero element is greater than or equal to some atom. Remark in Kalmbach p. 140. Also Definition 3.4-2 in MegPav2000 p. 2345 (PDF p. 8). (Contributed by NM, 24-Jun-2004) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | hatomic | |- ( ( A e. CH /\ A =/= 0H ) -> E. x e. HAtoms x C_ A ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | neeq1 | |- ( A = if ( A e. CH , A , 0H ) -> ( A =/= 0H <-> if ( A e. CH , A , 0H ) =/= 0H ) ) |
|
| 2 | sseq2 | |- ( A = if ( A e. CH , A , 0H ) -> ( x C_ A <-> x C_ if ( A e. CH , A , 0H ) ) ) |
|
| 3 | 2 | rexbidv | |- ( A = if ( A e. CH , A , 0H ) -> ( E. x e. HAtoms x C_ A <-> E. x e. HAtoms x C_ if ( A e. CH , A , 0H ) ) ) |
| 4 | 1 3 | imbi12d | |- ( A = if ( A e. CH , A , 0H ) -> ( ( A =/= 0H -> E. x e. HAtoms x C_ A ) <-> ( if ( A e. CH , A , 0H ) =/= 0H -> E. x e. HAtoms x C_ if ( A e. CH , A , 0H ) ) ) ) |
| 5 | h0elch | |- 0H e. CH |
|
| 6 | 5 | elimel | |- if ( A e. CH , A , 0H ) e. CH |
| 7 | 6 | hatomici | |- ( if ( A e. CH , A , 0H ) =/= 0H -> E. x e. HAtoms x C_ if ( A e. CH , A , 0H ) ) |
| 8 | 4 7 | dedth | |- ( A e. CH -> ( A =/= 0H -> E. x e. HAtoms x C_ A ) ) |
| 9 | 8 | imp | |- ( ( A e. CH /\ A =/= 0H ) -> E. x e. HAtoms x C_ A ) |