This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If two lattice elements that cover a third are comparable, then they are equal. (Contributed by NM, 6-Feb-2012)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cvrcmp.b | |- B = ( Base ` K ) |
|
| cvrcmp.l | |- .<_ = ( le ` K ) |
||
| cvrcmp.c | |- C = ( |
||
| Assertion | cvrcmp | |- ( ( K e. Poset /\ ( X e. B /\ Y e. B /\ Z e. B ) /\ ( Z C X /\ Z C Y ) ) -> ( X .<_ Y <-> X = Y ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cvrcmp.b | |- B = ( Base ` K ) |
|
| 2 | cvrcmp.l | |- .<_ = ( le ` K ) |
|
| 3 | cvrcmp.c | |- C = ( |
|
| 4 | simpl1 | |- ( ( ( K e. Poset /\ ( X e. B /\ Y e. B /\ Z e. B ) /\ ( Z C X /\ Z C Y ) ) /\ X .<_ Y ) -> K e. Poset ) |
|
| 5 | simpl23 | |- ( ( ( K e. Poset /\ ( X e. B /\ Y e. B /\ Z e. B ) /\ ( Z C X /\ Z C Y ) ) /\ X .<_ Y ) -> Z e. B ) |
|
| 6 | simpl21 | |- ( ( ( K e. Poset /\ ( X e. B /\ Y e. B /\ Z e. B ) /\ ( Z C X /\ Z C Y ) ) /\ X .<_ Y ) -> X e. B ) |
|
| 7 | simpl3l | |- ( ( ( K e. Poset /\ ( X e. B /\ Y e. B /\ Z e. B ) /\ ( Z C X /\ Z C Y ) ) /\ X .<_ Y ) -> Z C X ) |
|
| 8 | 1 3 | cvrne | |- ( ( ( K e. Poset /\ Z e. B /\ X e. B ) /\ Z C X ) -> Z =/= X ) |
| 9 | 4 5 6 7 8 | syl31anc | |- ( ( ( K e. Poset /\ ( X e. B /\ Y e. B /\ Z e. B ) /\ ( Z C X /\ Z C Y ) ) /\ X .<_ Y ) -> Z =/= X ) |
| 10 | 1 2 3 | cvrle | |- ( ( ( K e. Poset /\ Z e. B /\ X e. B ) /\ Z C X ) -> Z .<_ X ) |
| 11 | 4 5 6 7 10 | syl31anc | |- ( ( ( K e. Poset /\ ( X e. B /\ Y e. B /\ Z e. B ) /\ ( Z C X /\ Z C Y ) ) /\ X .<_ Y ) -> Z .<_ X ) |
| 12 | simpr | |- ( ( ( K e. Poset /\ ( X e. B /\ Y e. B /\ Z e. B ) /\ ( Z C X /\ Z C Y ) ) /\ X .<_ Y ) -> X .<_ Y ) |
|
| 13 | simpl22 | |- ( ( ( K e. Poset /\ ( X e. B /\ Y e. B /\ Z e. B ) /\ ( Z C X /\ Z C Y ) ) /\ X .<_ Y ) -> Y e. B ) |
|
| 14 | simpl3r | |- ( ( ( K e. Poset /\ ( X e. B /\ Y e. B /\ Z e. B ) /\ ( Z C X /\ Z C Y ) ) /\ X .<_ Y ) -> Z C Y ) |
|
| 15 | 1 2 3 | cvrnbtwn4 | |- ( ( K e. Poset /\ ( Z e. B /\ Y e. B /\ X e. B ) /\ Z C Y ) -> ( ( Z .<_ X /\ X .<_ Y ) <-> ( Z = X \/ X = Y ) ) ) |
| 16 | 4 5 13 6 14 15 | syl131anc | |- ( ( ( K e. Poset /\ ( X e. B /\ Y e. B /\ Z e. B ) /\ ( Z C X /\ Z C Y ) ) /\ X .<_ Y ) -> ( ( Z .<_ X /\ X .<_ Y ) <-> ( Z = X \/ X = Y ) ) ) |
| 17 | 11 12 16 | mpbi2and | |- ( ( ( K e. Poset /\ ( X e. B /\ Y e. B /\ Z e. B ) /\ ( Z C X /\ Z C Y ) ) /\ X .<_ Y ) -> ( Z = X \/ X = Y ) ) |
| 18 | neor | |- ( ( Z = X \/ X = Y ) <-> ( Z =/= X -> X = Y ) ) |
|
| 19 | 17 18 | sylib | |- ( ( ( K e. Poset /\ ( X e. B /\ Y e. B /\ Z e. B ) /\ ( Z C X /\ Z C Y ) ) /\ X .<_ Y ) -> ( Z =/= X -> X = Y ) ) |
| 20 | 9 19 | mpd | |- ( ( ( K e. Poset /\ ( X e. B /\ Y e. B /\ Z e. B ) /\ ( Z C X /\ Z C Y ) ) /\ X .<_ Y ) -> X = Y ) |
| 21 | 20 | ex | |- ( ( K e. Poset /\ ( X e. B /\ Y e. B /\ Z e. B ) /\ ( Z C X /\ Z C Y ) ) -> ( X .<_ Y -> X = Y ) ) |
| 22 | simp1 | |- ( ( K e. Poset /\ ( X e. B /\ Y e. B /\ Z e. B ) /\ ( Z C X /\ Z C Y ) ) -> K e. Poset ) |
|
| 23 | simp21 | |- ( ( K e. Poset /\ ( X e. B /\ Y e. B /\ Z e. B ) /\ ( Z C X /\ Z C Y ) ) -> X e. B ) |
|
| 24 | 1 2 | posref | |- ( ( K e. Poset /\ X e. B ) -> X .<_ X ) |
| 25 | 22 23 24 | syl2anc | |- ( ( K e. Poset /\ ( X e. B /\ Y e. B /\ Z e. B ) /\ ( Z C X /\ Z C Y ) ) -> X .<_ X ) |
| 26 | breq2 | |- ( X = Y -> ( X .<_ X <-> X .<_ Y ) ) |
|
| 27 | 25 26 | syl5ibcom | |- ( ( K e. Poset /\ ( X e. B /\ Y e. B /\ Z e. B ) /\ ( Z C X /\ Z C Y ) ) -> ( X = Y -> X .<_ Y ) ) |
| 28 | 21 27 | impbid | |- ( ( K e. Poset /\ ( X e. B /\ Y e. B /\ Z e. B ) /\ ( Z C X /\ Z C Y ) ) -> ( X .<_ Y <-> X = Y ) ) |