This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Two atoms in a subset relationship are equal. (Contributed by NM, 26-Jun-2004) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | atsseq | |- ( ( A e. HAtoms /\ B e. HAtoms ) -> ( A C_ B <-> A = B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | atne0 | |- ( A e. HAtoms -> A =/= 0H ) |
|
| 2 | 1 | ad2antrr | |- ( ( ( A e. HAtoms /\ B e. HAtoms ) /\ A C_ B ) -> A =/= 0H ) |
| 3 | atelch | |- ( A e. HAtoms -> A e. CH ) |
|
| 4 | atss | |- ( ( A e. CH /\ B e. HAtoms ) -> ( A C_ B -> ( A = B \/ A = 0H ) ) ) |
|
| 5 | 3 4 | sylan | |- ( ( A e. HAtoms /\ B e. HAtoms ) -> ( A C_ B -> ( A = B \/ A = 0H ) ) ) |
| 6 | 5 | imp | |- ( ( ( A e. HAtoms /\ B e. HAtoms ) /\ A C_ B ) -> ( A = B \/ A = 0H ) ) |
| 7 | 6 | ord | |- ( ( ( A e. HAtoms /\ B e. HAtoms ) /\ A C_ B ) -> ( -. A = B -> A = 0H ) ) |
| 8 | 7 | necon1ad | |- ( ( ( A e. HAtoms /\ B e. HAtoms ) /\ A C_ B ) -> ( A =/= 0H -> A = B ) ) |
| 9 | 2 8 | mpd | |- ( ( ( A e. HAtoms /\ B e. HAtoms ) /\ A C_ B ) -> A = B ) |
| 10 | 9 | ex | |- ( ( A e. HAtoms /\ B e. HAtoms ) -> ( A C_ B -> A = B ) ) |
| 11 | eqimss | |- ( A = B -> A C_ B ) |
|
| 12 | 10 11 | impbid1 | |- ( ( A e. HAtoms /\ B e. HAtoms ) -> ( A C_ B <-> A = B ) ) |