This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The set of arrows is the union of all the disjointified hom-sets. (Contributed by Mario Carneiro, 11-Jan-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | arwval.a | |- A = ( Arrow ` C ) |
|
| arwval.h | |- H = ( HomA ` C ) |
||
| Assertion | arwval | |- A = U. ran H |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | arwval.a | |- A = ( Arrow ` C ) |
|
| 2 | arwval.h | |- H = ( HomA ` C ) |
|
| 3 | fveq2 | |- ( c = C -> ( HomA ` c ) = ( HomA ` C ) ) |
|
| 4 | 3 2 | eqtr4di | |- ( c = C -> ( HomA ` c ) = H ) |
| 5 | 4 | rneqd | |- ( c = C -> ran ( HomA ` c ) = ran H ) |
| 6 | 5 | unieqd | |- ( c = C -> U. ran ( HomA ` c ) = U. ran H ) |
| 7 | df-arw | |- Arrow = ( c e. Cat |-> U. ran ( HomA ` c ) ) |
|
| 8 | 2 | fvexi | |- H e. _V |
| 9 | 8 | rnex | |- ran H e. _V |
| 10 | 9 | uniex | |- U. ran H e. _V |
| 11 | 6 7 10 | fvmpt | |- ( C e. Cat -> ( Arrow ` C ) = U. ran H ) |
| 12 | 7 | fvmptndm | |- ( -. C e. Cat -> ( Arrow ` C ) = (/) ) |
| 13 | df-homa | |- HomA = ( c e. Cat |-> ( x e. ( ( Base ` c ) X. ( Base ` c ) ) |-> ( { x } X. ( ( Hom ` c ) ` x ) ) ) ) |
|
| 14 | 13 | fvmptndm | |- ( -. C e. Cat -> ( HomA ` C ) = (/) ) |
| 15 | 2 14 | eqtrid | |- ( -. C e. Cat -> H = (/) ) |
| 16 | 15 | rneqd | |- ( -. C e. Cat -> ran H = ran (/) ) |
| 17 | rn0 | |- ran (/) = (/) |
|
| 18 | 16 17 | eqtrdi | |- ( -. C e. Cat -> ran H = (/) ) |
| 19 | 18 | unieqd | |- ( -. C e. Cat -> U. ran H = U. (/) ) |
| 20 | uni0 | |- U. (/) = (/) |
|
| 21 | 19 20 | eqtrdi | |- ( -. C e. Cat -> U. ran H = (/) ) |
| 22 | 12 21 | eqtr4d | |- ( -. C e. Cat -> ( Arrow ` C ) = U. ran H ) |
| 23 | 11 22 | pm2.61i | |- ( Arrow ` C ) = U. ran H |
| 24 | 1 23 | eqtri | |- A = U. ran H |