This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for dfac11 . Successor case 3, our required well-ordering. (Contributed by Stefan O'Rear, 19-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | aomclem3.b | |- B = { <. a , b >. | E. c e. ( R1 ` U. dom z ) ( ( c e. b /\ -. c e. a ) /\ A. d e. ( R1 ` U. dom z ) ( d ( z ` U. dom z ) c -> ( d e. a <-> d e. b ) ) ) } |
|
| aomclem3.c | |- C = ( a e. _V |-> sup ( ( y ` a ) , ( R1 ` dom z ) , B ) ) |
||
| aomclem3.d | |- D = recs ( ( a e. _V |-> ( C ` ( ( R1 ` dom z ) \ ran a ) ) ) ) |
||
| aomclem3.e | |- E = { <. a , b >. | |^| ( `' D " { a } ) e. |^| ( `' D " { b } ) } |
||
| aomclem3.on | |- ( ph -> dom z e. On ) |
||
| aomclem3.su | |- ( ph -> dom z = suc U. dom z ) |
||
| aomclem3.we | |- ( ph -> A. a e. dom z ( z ` a ) We ( R1 ` a ) ) |
||
| aomclem3.a | |- ( ph -> A e. On ) |
||
| aomclem3.za | |- ( ph -> dom z C_ A ) |
||
| aomclem3.y | |- ( ph -> A. a e. ~P ( R1 ` A ) ( a =/= (/) -> ( y ` a ) e. ( ( ~P a i^i Fin ) \ { (/) } ) ) ) |
||
| Assertion | aomclem3 | |- ( ph -> E We ( R1 ` dom z ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | aomclem3.b | |- B = { <. a , b >. | E. c e. ( R1 ` U. dom z ) ( ( c e. b /\ -. c e. a ) /\ A. d e. ( R1 ` U. dom z ) ( d ( z ` U. dom z ) c -> ( d e. a <-> d e. b ) ) ) } |
|
| 2 | aomclem3.c | |- C = ( a e. _V |-> sup ( ( y ` a ) , ( R1 ` dom z ) , B ) ) |
|
| 3 | aomclem3.d | |- D = recs ( ( a e. _V |-> ( C ` ( ( R1 ` dom z ) \ ran a ) ) ) ) |
|
| 4 | aomclem3.e | |- E = { <. a , b >. | |^| ( `' D " { a } ) e. |^| ( `' D " { b } ) } |
|
| 5 | aomclem3.on | |- ( ph -> dom z e. On ) |
|
| 6 | aomclem3.su | |- ( ph -> dom z = suc U. dom z ) |
|
| 7 | aomclem3.we | |- ( ph -> A. a e. dom z ( z ` a ) We ( R1 ` a ) ) |
|
| 8 | aomclem3.a | |- ( ph -> A e. On ) |
|
| 9 | aomclem3.za | |- ( ph -> dom z C_ A ) |
|
| 10 | aomclem3.y | |- ( ph -> A. a e. ~P ( R1 ` A ) ( a =/= (/) -> ( y ` a ) e. ( ( ~P a i^i Fin ) \ { (/) } ) ) ) |
|
| 11 | rneq | |- ( a = c -> ran a = ran c ) |
|
| 12 | 11 | difeq2d | |- ( a = c -> ( ( R1 ` dom z ) \ ran a ) = ( ( R1 ` dom z ) \ ran c ) ) |
| 13 | 12 | fveq2d | |- ( a = c -> ( C ` ( ( R1 ` dom z ) \ ran a ) ) = ( C ` ( ( R1 ` dom z ) \ ran c ) ) ) |
| 14 | 13 | cbvmptv | |- ( a e. _V |-> ( C ` ( ( R1 ` dom z ) \ ran a ) ) ) = ( c e. _V |-> ( C ` ( ( R1 ` dom z ) \ ran c ) ) ) |
| 15 | recseq | |- ( ( a e. _V |-> ( C ` ( ( R1 ` dom z ) \ ran a ) ) ) = ( c e. _V |-> ( C ` ( ( R1 ` dom z ) \ ran c ) ) ) -> recs ( ( a e. _V |-> ( C ` ( ( R1 ` dom z ) \ ran a ) ) ) ) = recs ( ( c e. _V |-> ( C ` ( ( R1 ` dom z ) \ ran c ) ) ) ) ) |
|
| 16 | 14 15 | ax-mp | |- recs ( ( a e. _V |-> ( C ` ( ( R1 ` dom z ) \ ran a ) ) ) ) = recs ( ( c e. _V |-> ( C ` ( ( R1 ` dom z ) \ ran c ) ) ) ) |
| 17 | 3 16 | eqtri | |- D = recs ( ( c e. _V |-> ( C ` ( ( R1 ` dom z ) \ ran c ) ) ) ) |
| 18 | fvexd | |- ( ph -> ( R1 ` dom z ) e. _V ) |
|
| 19 | 1 2 5 6 7 8 9 10 | aomclem2 | |- ( ph -> A. a e. ~P ( R1 ` dom z ) ( a =/= (/) -> ( C ` a ) e. a ) ) |
| 20 | neeq1 | |- ( a = d -> ( a =/= (/) <-> d =/= (/) ) ) |
|
| 21 | fveq2 | |- ( a = d -> ( C ` a ) = ( C ` d ) ) |
|
| 22 | id | |- ( a = d -> a = d ) |
|
| 23 | 21 22 | eleq12d | |- ( a = d -> ( ( C ` a ) e. a <-> ( C ` d ) e. d ) ) |
| 24 | 20 23 | imbi12d | |- ( a = d -> ( ( a =/= (/) -> ( C ` a ) e. a ) <-> ( d =/= (/) -> ( C ` d ) e. d ) ) ) |
| 25 | 24 | cbvralvw | |- ( A. a e. ~P ( R1 ` dom z ) ( a =/= (/) -> ( C ` a ) e. a ) <-> A. d e. ~P ( R1 ` dom z ) ( d =/= (/) -> ( C ` d ) e. d ) ) |
| 26 | 19 25 | sylib | |- ( ph -> A. d e. ~P ( R1 ` dom z ) ( d =/= (/) -> ( C ` d ) e. d ) ) |
| 27 | 17 18 26 4 | dnwech | |- ( ph -> E We ( R1 ` dom z ) ) |