This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An alternate way to express the value of the aleph function: it is the least infinite cardinal different from all values at smaller arguments. Definition of aleph in Enderton p. 212 and definition of aleph in BellMachover p. 490 . (Contributed by NM, 16-Nov-2003)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | alephval3 | |- ( A e. On -> ( aleph ` A ) = |^| { x | ( ( card ` x ) = x /\ _om C_ x /\ A. y e. A -. x = ( aleph ` y ) ) } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | alephcard | |- ( card ` ( aleph ` A ) ) = ( aleph ` A ) |
|
| 2 | 1 | a1i | |- ( A e. On -> ( card ` ( aleph ` A ) ) = ( aleph ` A ) ) |
| 3 | alephgeom | |- ( A e. On <-> _om C_ ( aleph ` A ) ) |
|
| 4 | 3 | biimpi | |- ( A e. On -> _om C_ ( aleph ` A ) ) |
| 5 | alephord2i | |- ( A e. On -> ( y e. A -> ( aleph ` y ) e. ( aleph ` A ) ) ) |
|
| 6 | elirr | |- -. ( aleph ` y ) e. ( aleph ` y ) |
|
| 7 | eleq2 | |- ( ( aleph ` A ) = ( aleph ` y ) -> ( ( aleph ` y ) e. ( aleph ` A ) <-> ( aleph ` y ) e. ( aleph ` y ) ) ) |
|
| 8 | 6 7 | mtbiri | |- ( ( aleph ` A ) = ( aleph ` y ) -> -. ( aleph ` y ) e. ( aleph ` A ) ) |
| 9 | 8 | con2i | |- ( ( aleph ` y ) e. ( aleph ` A ) -> -. ( aleph ` A ) = ( aleph ` y ) ) |
| 10 | 5 9 | syl6 | |- ( A e. On -> ( y e. A -> -. ( aleph ` A ) = ( aleph ` y ) ) ) |
| 11 | 10 | ralrimiv | |- ( A e. On -> A. y e. A -. ( aleph ` A ) = ( aleph ` y ) ) |
| 12 | fvex | |- ( aleph ` A ) e. _V |
|
| 13 | fveq2 | |- ( x = ( aleph ` A ) -> ( card ` x ) = ( card ` ( aleph ` A ) ) ) |
|
| 14 | id | |- ( x = ( aleph ` A ) -> x = ( aleph ` A ) ) |
|
| 15 | 13 14 | eqeq12d | |- ( x = ( aleph ` A ) -> ( ( card ` x ) = x <-> ( card ` ( aleph ` A ) ) = ( aleph ` A ) ) ) |
| 16 | sseq2 | |- ( x = ( aleph ` A ) -> ( _om C_ x <-> _om C_ ( aleph ` A ) ) ) |
|
| 17 | eqeq1 | |- ( x = ( aleph ` A ) -> ( x = ( aleph ` y ) <-> ( aleph ` A ) = ( aleph ` y ) ) ) |
|
| 18 | 17 | notbid | |- ( x = ( aleph ` A ) -> ( -. x = ( aleph ` y ) <-> -. ( aleph ` A ) = ( aleph ` y ) ) ) |
| 19 | 18 | ralbidv | |- ( x = ( aleph ` A ) -> ( A. y e. A -. x = ( aleph ` y ) <-> A. y e. A -. ( aleph ` A ) = ( aleph ` y ) ) ) |
| 20 | 15 16 19 | 3anbi123d | |- ( x = ( aleph ` A ) -> ( ( ( card ` x ) = x /\ _om C_ x /\ A. y e. A -. x = ( aleph ` y ) ) <-> ( ( card ` ( aleph ` A ) ) = ( aleph ` A ) /\ _om C_ ( aleph ` A ) /\ A. y e. A -. ( aleph ` A ) = ( aleph ` y ) ) ) ) |
| 21 | 12 20 | elab | |- ( ( aleph ` A ) e. { x | ( ( card ` x ) = x /\ _om C_ x /\ A. y e. A -. x = ( aleph ` y ) ) } <-> ( ( card ` ( aleph ` A ) ) = ( aleph ` A ) /\ _om C_ ( aleph ` A ) /\ A. y e. A -. ( aleph ` A ) = ( aleph ` y ) ) ) |
| 22 | 2 4 11 21 | syl3anbrc | |- ( A e. On -> ( aleph ` A ) e. { x | ( ( card ` x ) = x /\ _om C_ x /\ A. y e. A -. x = ( aleph ` y ) ) } ) |
| 23 | eleq1 | |- ( z = ( aleph ` y ) -> ( z e. ( aleph ` A ) <-> ( aleph ` y ) e. ( aleph ` A ) ) ) |
|
| 24 | alephord2 | |- ( ( y e. On /\ A e. On ) -> ( y e. A <-> ( aleph ` y ) e. ( aleph ` A ) ) ) |
|
| 25 | 24 | bicomd | |- ( ( y e. On /\ A e. On ) -> ( ( aleph ` y ) e. ( aleph ` A ) <-> y e. A ) ) |
| 26 | 23 25 | sylan9bbr | |- ( ( ( y e. On /\ A e. On ) /\ z = ( aleph ` y ) ) -> ( z e. ( aleph ` A ) <-> y e. A ) ) |
| 27 | 26 | biimpcd | |- ( z e. ( aleph ` A ) -> ( ( ( y e. On /\ A e. On ) /\ z = ( aleph ` y ) ) -> y e. A ) ) |
| 28 | simpr | |- ( ( ( y e. On /\ A e. On ) /\ z = ( aleph ` y ) ) -> z = ( aleph ` y ) ) |
|
| 29 | 27 28 | jca2 | |- ( z e. ( aleph ` A ) -> ( ( ( y e. On /\ A e. On ) /\ z = ( aleph ` y ) ) -> ( y e. A /\ z = ( aleph ` y ) ) ) ) |
| 30 | 29 | exp4c | |- ( z e. ( aleph ` A ) -> ( y e. On -> ( A e. On -> ( z = ( aleph ` y ) -> ( y e. A /\ z = ( aleph ` y ) ) ) ) ) ) |
| 31 | 30 | com3r | |- ( A e. On -> ( z e. ( aleph ` A ) -> ( y e. On -> ( z = ( aleph ` y ) -> ( y e. A /\ z = ( aleph ` y ) ) ) ) ) ) |
| 32 | 31 | imp4b | |- ( ( A e. On /\ z e. ( aleph ` A ) ) -> ( ( y e. On /\ z = ( aleph ` y ) ) -> ( y e. A /\ z = ( aleph ` y ) ) ) ) |
| 33 | 32 | reximdv2 | |- ( ( A e. On /\ z e. ( aleph ` A ) ) -> ( E. y e. On z = ( aleph ` y ) -> E. y e. A z = ( aleph ` y ) ) ) |
| 34 | cardalephex | |- ( _om C_ z -> ( ( card ` z ) = z <-> E. y e. On z = ( aleph ` y ) ) ) |
|
| 35 | 34 | biimpac | |- ( ( ( card ` z ) = z /\ _om C_ z ) -> E. y e. On z = ( aleph ` y ) ) |
| 36 | 33 35 | impel | |- ( ( ( A e. On /\ z e. ( aleph ` A ) ) /\ ( ( card ` z ) = z /\ _om C_ z ) ) -> E. y e. A z = ( aleph ` y ) ) |
| 37 | dfrex2 | |- ( E. y e. A z = ( aleph ` y ) <-> -. A. y e. A -. z = ( aleph ` y ) ) |
|
| 38 | 36 37 | sylib | |- ( ( ( A e. On /\ z e. ( aleph ` A ) ) /\ ( ( card ` z ) = z /\ _om C_ z ) ) -> -. A. y e. A -. z = ( aleph ` y ) ) |
| 39 | nan | |- ( ( ( A e. On /\ z e. ( aleph ` A ) ) -> -. ( ( ( card ` z ) = z /\ _om C_ z ) /\ A. y e. A -. z = ( aleph ` y ) ) ) <-> ( ( ( A e. On /\ z e. ( aleph ` A ) ) /\ ( ( card ` z ) = z /\ _om C_ z ) ) -> -. A. y e. A -. z = ( aleph ` y ) ) ) |
|
| 40 | 38 39 | mpbir | |- ( ( A e. On /\ z e. ( aleph ` A ) ) -> -. ( ( ( card ` z ) = z /\ _om C_ z ) /\ A. y e. A -. z = ( aleph ` y ) ) ) |
| 41 | 40 | ex | |- ( A e. On -> ( z e. ( aleph ` A ) -> -. ( ( ( card ` z ) = z /\ _om C_ z ) /\ A. y e. A -. z = ( aleph ` y ) ) ) ) |
| 42 | vex | |- z e. _V |
|
| 43 | fveq2 | |- ( x = z -> ( card ` x ) = ( card ` z ) ) |
|
| 44 | id | |- ( x = z -> x = z ) |
|
| 45 | 43 44 | eqeq12d | |- ( x = z -> ( ( card ` x ) = x <-> ( card ` z ) = z ) ) |
| 46 | sseq2 | |- ( x = z -> ( _om C_ x <-> _om C_ z ) ) |
|
| 47 | eqeq1 | |- ( x = z -> ( x = ( aleph ` y ) <-> z = ( aleph ` y ) ) ) |
|
| 48 | 47 | notbid | |- ( x = z -> ( -. x = ( aleph ` y ) <-> -. z = ( aleph ` y ) ) ) |
| 49 | 48 | ralbidv | |- ( x = z -> ( A. y e. A -. x = ( aleph ` y ) <-> A. y e. A -. z = ( aleph ` y ) ) ) |
| 50 | 45 46 49 | 3anbi123d | |- ( x = z -> ( ( ( card ` x ) = x /\ _om C_ x /\ A. y e. A -. x = ( aleph ` y ) ) <-> ( ( card ` z ) = z /\ _om C_ z /\ A. y e. A -. z = ( aleph ` y ) ) ) ) |
| 51 | 42 50 | elab | |- ( z e. { x | ( ( card ` x ) = x /\ _om C_ x /\ A. y e. A -. x = ( aleph ` y ) ) } <-> ( ( card ` z ) = z /\ _om C_ z /\ A. y e. A -. z = ( aleph ` y ) ) ) |
| 52 | df-3an | |- ( ( ( card ` z ) = z /\ _om C_ z /\ A. y e. A -. z = ( aleph ` y ) ) <-> ( ( ( card ` z ) = z /\ _om C_ z ) /\ A. y e. A -. z = ( aleph ` y ) ) ) |
|
| 53 | 51 52 | bitri | |- ( z e. { x | ( ( card ` x ) = x /\ _om C_ x /\ A. y e. A -. x = ( aleph ` y ) ) } <-> ( ( ( card ` z ) = z /\ _om C_ z ) /\ A. y e. A -. z = ( aleph ` y ) ) ) |
| 54 | 53 | notbii | |- ( -. z e. { x | ( ( card ` x ) = x /\ _om C_ x /\ A. y e. A -. x = ( aleph ` y ) ) } <-> -. ( ( ( card ` z ) = z /\ _om C_ z ) /\ A. y e. A -. z = ( aleph ` y ) ) ) |
| 55 | 41 54 | imbitrrdi | |- ( A e. On -> ( z e. ( aleph ` A ) -> -. z e. { x | ( ( card ` x ) = x /\ _om C_ x /\ A. y e. A -. x = ( aleph ` y ) ) } ) ) |
| 56 | 55 | ralrimiv | |- ( A e. On -> A. z e. ( aleph ` A ) -. z e. { x | ( ( card ` x ) = x /\ _om C_ x /\ A. y e. A -. x = ( aleph ` y ) ) } ) |
| 57 | cardon | |- ( card ` x ) e. On |
|
| 58 | eleq1 | |- ( ( card ` x ) = x -> ( ( card ` x ) e. On <-> x e. On ) ) |
|
| 59 | 57 58 | mpbii | |- ( ( card ` x ) = x -> x e. On ) |
| 60 | 59 | 3ad2ant1 | |- ( ( ( card ` x ) = x /\ _om C_ x /\ A. y e. A -. x = ( aleph ` y ) ) -> x e. On ) |
| 61 | 60 | abssi | |- { x | ( ( card ` x ) = x /\ _om C_ x /\ A. y e. A -. x = ( aleph ` y ) ) } C_ On |
| 62 | oneqmini | |- ( { x | ( ( card ` x ) = x /\ _om C_ x /\ A. y e. A -. x = ( aleph ` y ) ) } C_ On -> ( ( ( aleph ` A ) e. { x | ( ( card ` x ) = x /\ _om C_ x /\ A. y e. A -. x = ( aleph ` y ) ) } /\ A. z e. ( aleph ` A ) -. z e. { x | ( ( card ` x ) = x /\ _om C_ x /\ A. y e. A -. x = ( aleph ` y ) ) } ) -> ( aleph ` A ) = |^| { x | ( ( card ` x ) = x /\ _om C_ x /\ A. y e. A -. x = ( aleph ` y ) ) } ) ) |
|
| 63 | 61 62 | ax-mp | |- ( ( ( aleph ` A ) e. { x | ( ( card ` x ) = x /\ _om C_ x /\ A. y e. A -. x = ( aleph ` y ) ) } /\ A. z e. ( aleph ` A ) -. z e. { x | ( ( card ` x ) = x /\ _om C_ x /\ A. y e. A -. x = ( aleph ` y ) ) } ) -> ( aleph ` A ) = |^| { x | ( ( card ` x ) = x /\ _om C_ x /\ A. y e. A -. x = ( aleph ` y ) ) } ) |
| 64 | 22 56 63 | syl2anc | |- ( A e. On -> ( aleph ` A ) = |^| { x | ( ( card ` x ) = x /\ _om C_ x /\ A. y e. A -. x = ( aleph ` y ) ) } ) |